Synthesis and chemoinformatics analysis of N-aryl-β-alanine derivatives

Synthesis and chemoinformatics analysis of N-aryl-β-alanine derivatives Carbohydrazides of N-substituted β-amino acids exhibit a variety of different biological activities including antibacterial, antiviral, fungicidal, antihelminthic, anticancer, antiinflammatory, etc. New potentially biologically active N-(4-iodophenyl)-β-alanine derivatives, N-(4-iodophenyl)-N-carboxyethyl-β-alanine derivatives, and their cyclization products were designed and synthesized. To determine the most propitious directions for further investigation of the obtained compounds, we tried to appraise their biological activity in silico using the ChemSpider and chemical structure lookup service (CSLS), chemical similarity assessment (Integrity and SuperPred), and machine learning methods [prediction of activity spectra for substances (PASS)]. No useful hints on potential biological activity of the obtained novel compounds were delivered by ChemSpider, CSLS, Integrity or SuperPred. In contrast, PASS predicted some biological activities that could be verified experimentally. Neither antibacterial nor antifungal activity was predicted for the compounds under study despite these actions being known for compounds from this chemical class. Evaluation of antibacterial (Escherichia coli B-906, Staphylococcus aureus 209-P, and Mycobacterium luteum B-91) and antifungal (Candida tenuis VKM Y-70 and Aspergillus niger F-1119) activities in vitro did not reveal any significant antimicrobial action, which corresponds to the computational prediction. Advantages and shortcomings of chemical similarity and machine learning techniques in computational assessment of biological activities are discussed. Based on the obtained results, we conclude that academic organic chemistry studies could provide a significant impact on drug discovery due to the novelty and diversity of the designed and synthesized compounds; however, practical utilization of this potential is narrowed by the limited facilities for assaying biological activities. Research on Chemical Intermediates Springer Journals

Loading next page...
Springer Netherlands
Copyright © 2014 by Springer Science+Business Media Dordrecht
Chemistry; Catalysis; Physical Chemistry; Inorganic Chemistry
Publisher site
See Article on Publisher Site


You’re reading a free preview. Subscribe to read the entire article.

DeepDyve is your
personal research library

It’s your single place to instantly
discover and read the research
that matters to you.

Enjoy affordable access to
over 12 million articles from more than
10,000 peer-reviewed journals.

All for just $49/month

Explore the DeepDyve Library

Unlimited reading

Read as many articles as you need. Full articles with original layout, charts and figures. Read online, from anywhere.

Stay up to date

Keep up with your field with Personalized Recommendations and Follow Journals to get automatic updates.

Organize your research

It’s easy to organize your research with our built-in tools.

Your journals are on DeepDyve

Read from thousands of the leading scholarly journals from SpringerNature, Elsevier, Wiley-Blackwell, Oxford University Press and more.

All the latest content is available, no embargo periods.

See the journals in your area

Monthly Plan

  • Read unlimited articles
  • Personalized recommendations
  • No expiration
  • Print 20 pages per month
  • 20% off on PDF purchases
  • Organize your research
  • Get updates on your journals and topic searches


Start Free Trial

14-day Free Trial

Best Deal — 39% off

Annual Plan

  • All the features of the Professional Plan, but for 39% off!
  • Billed annually
  • No expiration
  • For the normal price of 10 articles elsewhere, you get one full year of unlimited access to articles.



billed annually
Start Free Trial

14-day Free Trial