Synthesis and characterization of water-sensitive core-shell type microspheres for water shut-off in the oil field

Synthesis and characterization of water-sensitive core-shell type microspheres for water shut-off... Polyacrylamide (PAM)-silica microspheres with core-shell structure are synthesized by inverse microemulsion polymerization in this study for the application of water shut-off due to high strength of nanosilica, crosslinked shell of PAM and strong interaction between PAM and silica. The core-shell microspheres flow into the high permeable layers along with injected water, meanwhile, swell after absorbing water and migrate into the deeper layer under the pressure by deformation, which efficiently increase the pressure of low and medium permeable layers, and decrease the loss of water into high permeable layers. Most resources of crude oil locate in low and medium permeable layers, and this work plays a very important role in the enhancement of recovery ratio of crude oil by new material. Transmission electron microscope (TEM), digital microscopes, dynamic light scattering (DLS), and thermogravimetric analysis (TGA) are used to study the shape, size and high temperature resistant of the microsphere. Moreover, capillary flow experiments, nuclear-pore film filtration, and sand packed tube displacement experiment are applied to analysis the mechanisms of deep profile control. http://www.deepdyve.com/assets/images/DeepDyve-Logo-lg.png Russian Journal of Applied Chemistry Springer Journals

Synthesis and characterization of water-sensitive core-shell type microspheres for water shut-off in the oil field

Loading next page...
 
/lp/springer_journal/synthesis-and-characterization-of-water-sensitive-core-shell-type-1NCxGO10GM
Publisher
Pleiades Publishing
Copyright
Copyright © 2017 by Pleiades Publishing, Ltd.
Subject
Chemistry; Chemistry/Food Science, general; Industrial Chemistry/Chemical Engineering
ISSN
1070-4272
eISSN
1608-3296
D.O.I.
10.1134/S1070427217020239
Publisher site
See Article on Publisher Site

Abstract

Polyacrylamide (PAM)-silica microspheres with core-shell structure are synthesized by inverse microemulsion polymerization in this study for the application of water shut-off due to high strength of nanosilica, crosslinked shell of PAM and strong interaction between PAM and silica. The core-shell microspheres flow into the high permeable layers along with injected water, meanwhile, swell after absorbing water and migrate into the deeper layer under the pressure by deformation, which efficiently increase the pressure of low and medium permeable layers, and decrease the loss of water into high permeable layers. Most resources of crude oil locate in low and medium permeable layers, and this work plays a very important role in the enhancement of recovery ratio of crude oil by new material. Transmission electron microscope (TEM), digital microscopes, dynamic light scattering (DLS), and thermogravimetric analysis (TGA) are used to study the shape, size and high temperature resistant of the microsphere. Moreover, capillary flow experiments, nuclear-pore film filtration, and sand packed tube displacement experiment are applied to analysis the mechanisms of deep profile control.

Journal

Russian Journal of Applied ChemistrySpringer Journals

Published: Jun 2, 2017

References

You’re reading a free preview. Subscribe to read the entire article.


DeepDyve is your
personal research library

It’s your single place to instantly
discover and read the research
that matters to you.

Enjoy affordable access to
over 18 million articles from more than
15,000 peer-reviewed journals.

All for just $49/month

Explore the DeepDyve Library

Search

Query the DeepDyve database, plus search all of PubMed and Google Scholar seamlessly

Organize

Save any article or search result from DeepDyve, PubMed, and Google Scholar... all in one place.

Access

Get unlimited, online access to over 18 million full-text articles from more than 15,000 scientific journals.

Your journals are on DeepDyve

Read from thousands of the leading scholarly journals from SpringerNature, Elsevier, Wiley-Blackwell, Oxford University Press and more.

All the latest content is available, no embargo periods.

See the journals in your area

DeepDyve

Freelancer

DeepDyve

Pro

Price

FREE

$49/month
$360/year

Save searches from
Google Scholar,
PubMed

Create lists to
organize your research

Export lists, citations

Read DeepDyve articles

Abstract access only

Unlimited access to over
18 million full-text articles

Print

20 pages / month

PDF Discount

20% off