Synthesis and characterization of ordered mesoporous silica using rosin-based Gemini surfactants

Synthesis and characterization of ordered mesoporous silica using rosin-based Gemini surfactants As structure-directing agents, the molecular structure of surfactants is critical for determining the properties of prepared mesoporous materials. Using dehydroabietic acid as a starting material, a series of rosin-based Gemini surfactants (abbreviated as R-n-R, n = 3, 6, 8 and 10, indicating the carbon atom number contained in the spacer) were synthesized and applied as templates in the preparation of ordered mesoporous silica. The structures and morphologies of the samples were characterized by X-ray diffraction, scanning electron microscope, transmission electron microscope and N2 adsorption–desorption. The R-n-R surfactants feature rigid tricyclic hydrophobic groups with large volumes, which are beneficial for the formation of a three-dimensional cubic phase. Furthermore, the spacer length was found to have a tremendous effect on the structure of the prepared mesoporous silica materials. The head group of R-3-R, which has a short spacer, is excessively charged, leading to silica nanoparticles with an irregular morphology and a rather low BET surface area. With longer spacer lengths, R-6-R, R-8-R and R-10-R are conducive to generating silica nanoparticles with a novel dumbbell-like morphology and with higher BET surface areas of 1171, 1096 and 1186 m2 g−1, respectively. The results demonstrate the particularities of the Gemini surfactant structure in the preparation of mesoporous silica nanoparticles with novel morphologies, and the details of the molecular interactions that occur in the condensation of silicate anions are also revealed. http://www.deepdyve.com/assets/images/DeepDyve-Logo-lg.png Journal of Materials Science Springer Journals

Synthesis and characterization of ordered mesoporous silica using rosin-based Gemini surfactants

Loading next page...
 
/lp/springer_journal/synthesis-and-characterization-of-ordered-mesoporous-silica-using-4hVd0DhI3q
Publisher
Springer US
Copyright
Copyright © 2017 by Springer Science+Business Media, LLC
Subject
Materials Science; Materials Science, general; Characterization and Evaluation of Materials; Polymer Sciences; Continuum Mechanics and Mechanics of Materials; Crystallography and Scattering Methods; Classical Mechanics
ISSN
0022-2461
eISSN
1573-4803
D.O.I.
10.1007/s10853-017-1709-y
Publisher site
See Article on Publisher Site

Abstract

As structure-directing agents, the molecular structure of surfactants is critical for determining the properties of prepared mesoporous materials. Using dehydroabietic acid as a starting material, a series of rosin-based Gemini surfactants (abbreviated as R-n-R, n = 3, 6, 8 and 10, indicating the carbon atom number contained in the spacer) were synthesized and applied as templates in the preparation of ordered mesoporous silica. The structures and morphologies of the samples were characterized by X-ray diffraction, scanning electron microscope, transmission electron microscope and N2 adsorption–desorption. The R-n-R surfactants feature rigid tricyclic hydrophobic groups with large volumes, which are beneficial for the formation of a three-dimensional cubic phase. Furthermore, the spacer length was found to have a tremendous effect on the structure of the prepared mesoporous silica materials. The head group of R-3-R, which has a short spacer, is excessively charged, leading to silica nanoparticles with an irregular morphology and a rather low BET surface area. With longer spacer lengths, R-6-R, R-8-R and R-10-R are conducive to generating silica nanoparticles with a novel dumbbell-like morphology and with higher BET surface areas of 1171, 1096 and 1186 m2 g−1, respectively. The results demonstrate the particularities of the Gemini surfactant structure in the preparation of mesoporous silica nanoparticles with novel morphologies, and the details of the molecular interactions that occur in the condensation of silicate anions are also revealed.

Journal

Journal of Materials ScienceSpringer Journals

Published: Oct 23, 2017

References

You’re reading a free preview. Subscribe to read the entire article.


DeepDyve is your
personal research library

It’s your single place to instantly
discover and read the research
that matters to you.

Enjoy affordable access to
over 12 million articles from more than
10,000 peer-reviewed journals.

All for just $49/month

Explore the DeepDyve Library

Unlimited reading

Read as many articles as you need. Full articles with original layout, charts and figures. Read online, from anywhere.

Stay up to date

Keep up with your field with Personalized Recommendations and Follow Journals to get automatic updates.

Organize your research

It’s easy to organize your research with our built-in tools.

Your journals are on DeepDyve

Read from thousands of the leading scholarly journals from SpringerNature, Elsevier, Wiley-Blackwell, Oxford University Press and more.

All the latest content is available, no embargo periods.

See the journals in your area

DeepDyve Freelancer

DeepDyve Pro

Price
FREE
$49/month

$360/year
Save searches from
Google Scholar,
PubMed
Create lists to
organize your research
Export lists, citations
Read DeepDyve articles
Abstract access only
Unlimited access to over
18 million full-text articles
Print
20 pages/month
PDF Discount
20% off