Synthesis and characterization of novel magnetic Fe3O4/polyurethane foam composite applied to the carrier of immobilized microorganisms for wastewater treatment

Synthesis and characterization of novel magnetic Fe3O4/polyurethane foam composite applied to the... The objective of this work was to prepare novel magnetic Fe3O4/polyurethane foam (Fe3O4/PUF) composites applied to the carriers of immobilized microorganisms for toluene-containing wastewater treatment. The morphology and structure of Fe3O4/PUF composite were characterized by X-ray diffraction, Fourier transform IR spectroscopy, thermogravimetric analysis, differential scanning calorimetry, scanning electron microscopy, and magnetic property measurement system. These morphological investigations revealed that Fe3O4 nano-particles were well dispersed into the matrix of PUF with nano-scale diameter particles. TG experiments indicated that the initial thermal weight loss temperatures of composite with the content of 2.5 wt% and 7.5% Fe3O4 were increased by 7 and 16 °C, compared with pure PUF. The degradation efficiency of toluene with magnetic PUF composite was much higher than that of pure PUF carrier, and the reason why the immobilization of microbial biomass of microorganisms on the magnetic PUF composite was much higher than that of the pure PUF. The prepared magnetic Fe3O4/PUF composite offered excellent thermal stability and medium paramagnetic properties. And this composite could not only increase the immobilized biomass of the microorganisms, but also enhance the COD removal efficiency of wastewater. http://www.deepdyve.com/assets/images/DeepDyve-Logo-lg.png Research on Chemical Intermediates Springer Journals

Synthesis and characterization of novel magnetic Fe3O4/polyurethane foam composite applied to the carrier of immobilized microorganisms for wastewater treatment

Loading next page...
 
/lp/springer_journal/synthesis-and-characterization-of-novel-magnetic-fe3o4-polyurethane-tfqgB7w4uz
Publisher
Springer Netherlands
Copyright
Copyright © 2010 by Springer Science+Business Media B.V.
Subject
Chemistry; Inorganic Chemistry ; Physical Chemistry ; Catalysis
ISSN
0922-6168
eISSN
1568-5675
D.O.I.
10.1007/s11164-010-0134-5
Publisher site
See Article on Publisher Site

Abstract

The objective of this work was to prepare novel magnetic Fe3O4/polyurethane foam (Fe3O4/PUF) composites applied to the carriers of immobilized microorganisms for toluene-containing wastewater treatment. The morphology and structure of Fe3O4/PUF composite were characterized by X-ray diffraction, Fourier transform IR spectroscopy, thermogravimetric analysis, differential scanning calorimetry, scanning electron microscopy, and magnetic property measurement system. These morphological investigations revealed that Fe3O4 nano-particles were well dispersed into the matrix of PUF with nano-scale diameter particles. TG experiments indicated that the initial thermal weight loss temperatures of composite with the content of 2.5 wt% and 7.5% Fe3O4 were increased by 7 and 16 °C, compared with pure PUF. The degradation efficiency of toluene with magnetic PUF composite was much higher than that of pure PUF carrier, and the reason why the immobilization of microbial biomass of microorganisms on the magnetic PUF composite was much higher than that of the pure PUF. The prepared magnetic Fe3O4/PUF composite offered excellent thermal stability and medium paramagnetic properties. And this composite could not only increase the immobilized biomass of the microorganisms, but also enhance the COD removal efficiency of wastewater.

Journal

Research on Chemical IntermediatesSpringer Journals

Published: Mar 19, 2010

References

You’re reading a free preview. Subscribe to read the entire article.


DeepDyve is your
personal research library

It’s your single place to instantly
discover and read the research
that matters to you.

Enjoy affordable access to
over 18 million articles from more than
15,000 peer-reviewed journals.

All for just $49/month

Explore the DeepDyve Library

Search

Query the DeepDyve database, plus search all of PubMed and Google Scholar seamlessly

Organize

Save any article or search result from DeepDyve, PubMed, and Google Scholar... all in one place.

Access

Get unlimited, online access to over 18 million full-text articles from more than 15,000 scientific journals.

Your journals are on DeepDyve

Read from thousands of the leading scholarly journals from SpringerNature, Elsevier, Wiley-Blackwell, Oxford University Press and more.

All the latest content is available, no embargo periods.

See the journals in your area

DeepDyve

Freelancer

DeepDyve

Pro

Price

FREE

$49/month
$360/year

Save searches from
Google Scholar,
PubMed

Create lists to
organize your research

Export lists, citations

Read DeepDyve articles

Abstract access only

Unlimited access to over
18 million full-text articles

Print

20 pages / month

PDF Discount

20% off