Synthesis and characterisation of small ZnS particles

Synthesis and characterisation of small ZnS particles Small ZnS particles, prepared at room temperature in an alcoholic medium using a zinc salt and thioacetamide as sulphur source, have been characterised using a suite of techniques which includes XRD, TEM and Zn K-edge EXAFS. The investigation suggests that aggregates of small sphalerite particles (cubic lattice), with average size of 3.5 nm and well-defined morphology are obtained and the particle size appears not to change with increase in the reaction time from 2 to 24 h. Zn K-edge EXAFS experiments were performed at 10 K, in order to reduce thermal disorder and the refinement of the EXAFS data resulted in very small second shell coordination numbers with respect to the bulk samples. The result is in good agreement with SEM and XRD data about the presence of nanosized particles, having a large number of surface atoms with low second shell coordination number. http://www.deepdyve.com/assets/images/DeepDyve-Logo-lg.png Research on Chemical Intermediates Springer Journals

Synthesis and characterisation of small ZnS particles

Loading next page...
 
/lp/springer_journal/synthesis-and-characterisation-of-small-zns-particles-cXtKYojNZK
Publisher
Brill Academic Publishers
Copyright
Copyright © 2006 by VSP
Subject
Chemistry; Inorganic Chemistry; Physical Chemistry; Catalysis
ISSN
0922-6168
eISSN
1568-5675
D.O.I.
10.1163/156856706778400334
Publisher site
See Article on Publisher Site

Abstract

Small ZnS particles, prepared at room temperature in an alcoholic medium using a zinc salt and thioacetamide as sulphur source, have been characterised using a suite of techniques which includes XRD, TEM and Zn K-edge EXAFS. The investigation suggests that aggregates of small sphalerite particles (cubic lattice), with average size of 3.5 nm and well-defined morphology are obtained and the particle size appears not to change with increase in the reaction time from 2 to 24 h. Zn K-edge EXAFS experiments were performed at 10 K, in order to reduce thermal disorder and the refinement of the EXAFS data resulted in very small second shell coordination numbers with respect to the bulk samples. The result is in good agreement with SEM and XRD data about the presence of nanosized particles, having a large number of surface atoms with low second shell coordination number.

Journal

Research on Chemical IntermediatesSpringer Journals

Published: Jan 1, 2006

References

You’re reading a free preview. Subscribe to read the entire article.


DeepDyve is your
personal research library

It’s your single place to instantly
discover and read the research
that matters to you.

Enjoy affordable access to
over 18 million articles from more than
15,000 peer-reviewed journals.

All for just $49/month

Explore the DeepDyve Library

Search

Query the DeepDyve database, plus search all of PubMed and Google Scholar seamlessly

Organize

Save any article or search result from DeepDyve, PubMed, and Google Scholar... all in one place.

Access

Get unlimited, online access to over 18 million full-text articles from more than 15,000 scientific journals.

Your journals are on DeepDyve

Read from thousands of the leading scholarly journals from SpringerNature, Elsevier, Wiley-Blackwell, Oxford University Press and more.

All the latest content is available, no embargo periods.

See the journals in your area

DeepDyve

Freelancer

DeepDyve

Pro

Price

FREE

$49/month
$360/year

Save searches from
Google Scholar,
PubMed

Create lists to
organize your research

Export lists, citations

Read DeepDyve articles

Abstract access only

Unlimited access to over
18 million full-text articles

Print

20 pages / month

PDF Discount

20% off