Synthesis and application of TiO2/SiO2/Fe3O4 nanoparticles as novel adsorbent for removal of Cd(II), Hg(II) and Ni(II) ions from water samples

Synthesis and application of TiO2/SiO2/Fe3O4 nanoparticles as novel adsorbent for removal of... In the current study, SiO2/Fe3O4 core–shell nanoparticles functionalized with TiO2, using a simple method and application for removal of Cd(II), Hg(II) and Ni(II) ions from aqueous solution. The structure of the resulting product was confirmed by X-ray diffraction spectrometry, transmission electron microscopy (TEM), pHpzc and Brunauer, Emmett and Teller methods. The average diameter of TiO2/SiO2/Fe3O4 nanoparticles according to TEM was obtained around 48 nm. In batch tests, the effects of pH, initial metal concentration, contact time and temperature were studied. Adsorption of metal ions was studied from both kinetics and equilibrium point of view. Maximum adsorption capacity of Cd(II), Hg(II) and Ni(II) on TiO2/SiO2/Fe3O4 nanoparticles was 670.9, 745.6 and 563.0 mg g−1, respectively. Adsorption–desorption results showed that the reusability of nanoparticles was encouraging. This adsorbent was successfully applied to removal Cd(II), Hg(II) and Ni(II) ions in real samples including tap water, electronic wastewater and medical wastewater. http://www.deepdyve.com/assets/images/DeepDyve-Logo-lg.png Clean Technologies and Environmental Policy Springer Journals

Synthesis and application of TiO2/SiO2/Fe3O4 nanoparticles as novel adsorbent for removal of Cd(II), Hg(II) and Ni(II) ions from water samples

Loading next page...
 
/lp/springer_journal/synthesis-and-application-of-tio2-sio2-fe3o4-nanoparticles-as-novel-wHaSJDVg20
Publisher
Springer Berlin Heidelberg
Copyright
Copyright © 2017 by Springer-Verlag Berlin Heidelberg
Subject
Environment; Sustainable Development; Industrial Chemistry/Chemical Engineering; Industrial and Production Engineering; Environmental Engineering/Biotechnology; Environmental Economics
ISSN
1618-954X
eISSN
1618-9558
D.O.I.
10.1007/s10098-017-1374-5
Publisher site
See Article on Publisher Site

Abstract

In the current study, SiO2/Fe3O4 core–shell nanoparticles functionalized with TiO2, using a simple method and application for removal of Cd(II), Hg(II) and Ni(II) ions from aqueous solution. The structure of the resulting product was confirmed by X-ray diffraction spectrometry, transmission electron microscopy (TEM), pHpzc and Brunauer, Emmett and Teller methods. The average diameter of TiO2/SiO2/Fe3O4 nanoparticles according to TEM was obtained around 48 nm. In batch tests, the effects of pH, initial metal concentration, contact time and temperature were studied. Adsorption of metal ions was studied from both kinetics and equilibrium point of view. Maximum adsorption capacity of Cd(II), Hg(II) and Ni(II) on TiO2/SiO2/Fe3O4 nanoparticles was 670.9, 745.6 and 563.0 mg g−1, respectively. Adsorption–desorption results showed that the reusability of nanoparticles was encouraging. This adsorbent was successfully applied to removal Cd(II), Hg(II) and Ni(II) ions in real samples including tap water, electronic wastewater and medical wastewater.

Journal

Clean Technologies and Environmental PolicySpringer Journals

Published: Jun 5, 2017

References

You’re reading a free preview. Subscribe to read the entire article.


DeepDyve is your
personal research library

It’s your single place to instantly
discover and read the research
that matters to you.

Enjoy affordable access to
over 18 million articles from more than
15,000 peer-reviewed journals.

All for just $49/month

Explore the DeepDyve Library

Search

Query the DeepDyve database, plus search all of PubMed and Google Scholar seamlessly

Organize

Save any article or search result from DeepDyve, PubMed, and Google Scholar... all in one place.

Access

Get unlimited, online access to over 18 million full-text articles from more than 15,000 scientific journals.

Your journals are on DeepDyve

Read from thousands of the leading scholarly journals from SpringerNature, Elsevier, Wiley-Blackwell, Oxford University Press and more.

All the latest content is available, no embargo periods.

See the journals in your area

DeepDyve

Freelancer

DeepDyve

Pro

Price

FREE

$49/month
$360/year

Save searches from
Google Scholar,
PubMed

Create lists to
organize your research

Export lists, citations

Read DeepDyve articles

Abstract access only

Unlimited access to over
18 million full-text articles

Print

20 pages / month

PDF Discount

20% off