Syngas conversion beyond chemical equilibrium by in situ bimolecular reaction

Syngas conversion beyond chemical equilibrium by in situ bimolecular reaction An in situ bimolecular reaction, in which syngas is fed with toluene as a secondary reactant (hereafter Tol in situ methylation), was studied over bifunctional catalysts comprised of methanol synthesis catalyst and H-ZSM-5 in a fixed-bed down-flow reactor at 460 psig. When physically mixed with H-ZSM-5 to form bifunctional catalysts, CrZ_HZ (Cr2O3/ZnO + HZSM-5) catalyst showed much higher activity than CZA_HZ (CuO/ZnO/Al2O3 + H-ZSM-5) in the Tol in situ methylation, while CrZ catalyst exhibited substantially lower activity than CZA in methanol synthesis. CO conversion to methanol in the Tol in situ methylation was estimated by Bz in situ methylation. The CO conversion to methanol was calculated to be in the range of 11–27 %, while that in methanol synthesis over CrZ was about 5 % at most due to chemical equilibrium limitation. By employing a silicalite-coated H-ZSM-5 (Sil/HZ) in bifunctional catalyst, xylene selectivity and para-xylene yield were much improved in the Tol in situ methylation. http://www.deepdyve.com/assets/images/DeepDyve-Logo-lg.png Research on Chemical Intermediates Springer Journals

Syngas conversion beyond chemical equilibrium by in situ bimolecular reaction

Loading next page...
 
/lp/springer_journal/syngas-conversion-beyond-chemical-equilibrium-by-in-situ-bimolecular-LR5ek0hcRy
Publisher
Springer Netherlands
Copyright
Copyright © 2015 by Springer Science+Business Media Dordrecht
Subject
Chemistry; Catalysis; Physical Chemistry; Inorganic Chemistry
ISSN
0922-6168
eISSN
1568-5675
D.O.I.
10.1007/s11164-015-2353-2
Publisher site
See Article on Publisher Site

Abstract

An in situ bimolecular reaction, in which syngas is fed with toluene as a secondary reactant (hereafter Tol in situ methylation), was studied over bifunctional catalysts comprised of methanol synthesis catalyst and H-ZSM-5 in a fixed-bed down-flow reactor at 460 psig. When physically mixed with H-ZSM-5 to form bifunctional catalysts, CrZ_HZ (Cr2O3/ZnO + HZSM-5) catalyst showed much higher activity than CZA_HZ (CuO/ZnO/Al2O3 + H-ZSM-5) in the Tol in situ methylation, while CrZ catalyst exhibited substantially lower activity than CZA in methanol synthesis. CO conversion to methanol in the Tol in situ methylation was estimated by Bz in situ methylation. The CO conversion to methanol was calculated to be in the range of 11–27 %, while that in methanol synthesis over CrZ was about 5 % at most due to chemical equilibrium limitation. By employing a silicalite-coated H-ZSM-5 (Sil/HZ) in bifunctional catalyst, xylene selectivity and para-xylene yield were much improved in the Tol in situ methylation.

Journal

Research on Chemical IntermediatesSpringer Journals

Published: Dec 12, 2015

References

You’re reading a free preview. Subscribe to read the entire article.


DeepDyve is your
personal research library

It’s your single place to instantly
discover and read the research
that matters to you.

Enjoy affordable access to
over 18 million articles from more than
15,000 peer-reviewed journals.

All for just $49/month

Explore the DeepDyve Library

Search

Query the DeepDyve database, plus search all of PubMed and Google Scholar seamlessly

Organize

Save any article or search result from DeepDyve, PubMed, and Google Scholar... all in one place.

Access

Get unlimited, online access to over 18 million full-text articles from more than 15,000 scientific journals.

Your journals are on DeepDyve

Read from thousands of the leading scholarly journals from SpringerNature, Elsevier, Wiley-Blackwell, Oxford University Press and more.

All the latest content is available, no embargo periods.

See the journals in your area

DeepDyve

Freelancer

DeepDyve

Pro

Price

FREE

$49/month
$360/year

Save searches from
Google Scholar,
PubMed

Create lists to
organize your research

Export lists, citations

Read DeepDyve articles

Abstract access only

Unlimited access to over
18 million full-text articles

Print

20 pages / month

PDF Discount

20% off