Synergy between the light-induced acute response and the circadian cycle: a new mechanism for the synchronization of the Phaseolus vulgaris clock to light

Synergy between the light-induced acute response and the circadian cycle: a new mechanism for... PvLHY and Lhcb expression has been studied in primary bean leaves after exposure of etiolated leaves to two or three white light-pulses and under different photoperiods. Under the tested photoperiods, the steady-state mRNA levels exhibit diurnal oscillations with zenith in the morning between ZT21 and 4 for PvLHY and between ZT4 and 6 for Lhcb. Nadir is in the evening between ZT12 and 18 for PvLHY and ZT18 and 24 for Lhcb. Light-pulses to etiolated seedlings induce a differentiated acute response that is reciprocally correlated with the amplitude of the following circadian cycle. In addition, the clock modulates the duration of the acute response (descending part of the curve included), which according to the phase of the rhythm at light application extends from 7 to 18 h. This constitutes the response dynamics of the Phaseolus clock to light. Similarly, the waveform of PvLHY and Lhcb expression during the day of different photoperiods resembles in induction capability (accomplishment of peak after lights-on) and duration (from lights-on phase to trough) the phase-dependent progression of acute response in etiolated seedlings. Consequently, the peak of Lhcb (all tested photoperiods) and PvLHY (in LD 18:6) attained in the photophase corresponds to the acute response peak, while the peak of PvLHY during the scotophase (in LD 12:12 and 6:18) corresponds to the circadian peak. Thus, the effect of the response dynamics in the photoperiod determines the coincidence of the peak with the photo- or scotophase, respectively. This represents a new model mechanism for the adaptation of the Phaseolus clock to light. http://www.deepdyve.com/assets/images/DeepDyve-Logo-lg.png Plant Molecular Biology Springer Journals

Synergy between the light-induced acute response and the circadian cycle: a new mechanism for the synchronization of the Phaseolus vulgaris clock to light

Loading next page...
 
/lp/springer_journal/synergy-between-the-light-induced-acute-response-and-the-circadian-kiqpRqtA8b
Publisher
Kluwer Academic Publishers
Copyright
Copyright © 2006 by Springer Science+Business Media B.V.
Subject
Life Sciences; Biochemistry, general; Plant Sciences; Plant Pathology
ISSN
0167-4412
eISSN
1573-5028
D.O.I.
10.1007/s11103-006-0056-1
Publisher site
See Article on Publisher Site

Abstract

PvLHY and Lhcb expression has been studied in primary bean leaves after exposure of etiolated leaves to two or three white light-pulses and under different photoperiods. Under the tested photoperiods, the steady-state mRNA levels exhibit diurnal oscillations with zenith in the morning between ZT21 and 4 for PvLHY and between ZT4 and 6 for Lhcb. Nadir is in the evening between ZT12 and 18 for PvLHY and ZT18 and 24 for Lhcb. Light-pulses to etiolated seedlings induce a differentiated acute response that is reciprocally correlated with the amplitude of the following circadian cycle. In addition, the clock modulates the duration of the acute response (descending part of the curve included), which according to the phase of the rhythm at light application extends from 7 to 18 h. This constitutes the response dynamics of the Phaseolus clock to light. Similarly, the waveform of PvLHY and Lhcb expression during the day of different photoperiods resembles in induction capability (accomplishment of peak after lights-on) and duration (from lights-on phase to trough) the phase-dependent progression of acute response in etiolated seedlings. Consequently, the peak of Lhcb (all tested photoperiods) and PvLHY (in LD 18:6) attained in the photophase corresponds to the acute response peak, while the peak of PvLHY during the scotophase (in LD 12:12 and 6:18) corresponds to the circadian peak. Thus, the effect of the response dynamics in the photoperiod determines the coincidence of the peak with the photo- or scotophase, respectively. This represents a new model mechanism for the adaptation of the Phaseolus clock to light.

Journal

Plant Molecular BiologySpringer Journals

Published: Mar 28, 2006

References

You’re reading a free preview. Subscribe to read the entire article.


DeepDyve is your
personal research library

It’s your single place to instantly
discover and read the research
that matters to you.

Enjoy affordable access to
over 12 million articles from more than
10,000 peer-reviewed journals.

All for just $49/month

Explore the DeepDyve Library

Unlimited reading

Read as many articles as you need. Full articles with original layout, charts and figures. Read online, from anywhere.

Stay up to date

Keep up with your field with Personalized Recommendations and Follow Journals to get automatic updates.

Organize your research

It’s easy to organize your research with our built-in tools.

Your journals are on DeepDyve

Read from thousands of the leading scholarly journals from SpringerNature, Elsevier, Wiley-Blackwell, Oxford University Press and more.

All the latest content is available, no embargo periods.

See the journals in your area

DeepDyve Freelancer

DeepDyve Pro

Price
FREE
$49/month

$360/year
Save searches from Google Scholar, PubMed
Create lists to organize your research
Export lists, citations
Read DeepDyve articles
Abstract access only
Unlimited access to over
18 million full-text articles
Print
20 pages/month
PDF Discount
20% off