Synergizing community-based forest monitoring with remote sensing: a path to an effective REDD+MRV system

Synergizing community-based forest monitoring with remote sensing: a path to an effective... Background: The reliable monitoring, reporting and verification (MRV ) of carbon emissions and removals from the forest sector is an important part of the efforts on reducing emissions from deforestation and forest degrada- tion (REDD+). Forest-dependent local communities are engaged to contribute to MRV through community-based monitoring systems. The efficiency of such monitoring systems could be improved through the rational integration of the studies at permanent plots with the geospatial technologies. This article presents a case study of integrating community-based measurements at permanent plots at the foothills of central Nepal and biomass maps that were developed using GeoEye-1 and IKONS satellite images. Results: The use of very-high-resolution satellite-based tree cover parameters, including crown projected area (CPA), crown density and crown size classes improves salience, reliability and legitimacy of the community-based survey of 0.04% intensity at the lower cost than increasing intensity of the community-based survey to 0.14% level (2.5 USD/ha vs. 7.5 USD/ha). Conclusion: The proposed REDD+ MRV complementary system is the first of its kind and demonstrates the enhancement of information content, accuracy of reporting and reduction in cost. It also allows assessment of the efficacy of community-based forest management and extension to national scale. Keywords: Satellite images, http://www.deepdyve.com/assets/images/DeepDyve-Logo-lg.png Carbon Balance and Management Springer Journals

Synergizing community-based forest monitoring with remote sensing: a path to an effective REDD+MRV system

Loading next page...
 
/lp/springer_journal/synergizing-community-based-forest-monitoring-with-remote-sensing-a-K3XEWjgkQt
Publisher
Springer International Publishing
Copyright
Copyright © 2017 by The Author(s)
Subject
Environment; Environmental Management; Ecosystems; Forestry
eISSN
1750-0680
D.O.I.
10.1186/s13021-017-0087-8
Publisher site
See Article on Publisher Site

Abstract

Background: The reliable monitoring, reporting and verification (MRV ) of carbon emissions and removals from the forest sector is an important part of the efforts on reducing emissions from deforestation and forest degrada- tion (REDD+). Forest-dependent local communities are engaged to contribute to MRV through community-based monitoring systems. The efficiency of such monitoring systems could be improved through the rational integration of the studies at permanent plots with the geospatial technologies. This article presents a case study of integrating community-based measurements at permanent plots at the foothills of central Nepal and biomass maps that were developed using GeoEye-1 and IKONS satellite images. Results: The use of very-high-resolution satellite-based tree cover parameters, including crown projected area (CPA), crown density and crown size classes improves salience, reliability and legitimacy of the community-based survey of 0.04% intensity at the lower cost than increasing intensity of the community-based survey to 0.14% level (2.5 USD/ha vs. 7.5 USD/ha). Conclusion: The proposed REDD+ MRV complementary system is the first of its kind and demonstrates the enhancement of information content, accuracy of reporting and reduction in cost. It also allows assessment of the efficacy of community-based forest management and extension to national scale. Keywords: Satellite images,

Journal

Carbon Balance and ManagementSpringer Journals

Published: Dec 1, 2017

References

You’re reading a free preview. Subscribe to read the entire article.


DeepDyve is your
personal research library

It’s your single place to instantly
discover and read the research
that matters to you.

Enjoy affordable access to
over 18 million articles from more than
15,000 peer-reviewed journals.

All for just $49/month

Explore the DeepDyve Library

Search

Query the DeepDyve database, plus search all of PubMed and Google Scholar seamlessly

Organize

Save any article or search result from DeepDyve, PubMed, and Google Scholar... all in one place.

Access

Get unlimited, online access to over 18 million full-text articles from more than 15,000 scientific journals.

Your journals are on DeepDyve

Read from thousands of the leading scholarly journals from SpringerNature, Elsevier, Wiley-Blackwell, Oxford University Press and more.

All the latest content is available, no embargo periods.

See the journals in your area

DeepDyve

Freelancer

DeepDyve

Pro

Price

FREE

$49/month
$360/year

Save searches from
Google Scholar,
PubMed

Create lists to
organize your research

Export lists, citations

Read DeepDyve articles

Abstract access only

Unlimited access to over
18 million full-text articles

Print

20 pages / month

PDF Discount

20% off