Synergistic effects of Cydia pomonella granulovirus GP37 on the infectivity of nucleopolyhedroviruses and the lethality of Bacillus thuringiensis

Synergistic effects of Cydia pomonella granulovirus GP37 on the infectivity of... To initiate an efficient primary infection, it is important for baculovirus virions to penetrate through the peritrophic membrane (PM) of the host insect. It is frequently reported that enhancins of baculoviruses significantly enhance viral infection by degrading the various protein components of PMs. However, not all baculoviruses encode enhancins. GP37s of baculoviruses share high amino acid identity with fusolins, synergistic factors found in entomopoxviruses. In this study, a truncated Cydia pomonella granulovirus GP37 was expressed in Escherichia coli . The expressed GP37 effectively bound to chitin, and binding occurred predominantly within 3 h. GP37 altered the protein profiles of Spodoptera exigua PMs, from which a 50-kDa protein was dissociated. Droplet-feeding bioassays indicated that GP37 significantly enhanced the infectivity of nucleopolyhedroviruses (NPVs) and the lethality of Bacillus thuringiensis (Bt) in S. exigua larvae. This is the first demonstration of the enhancement of NPVs and Bt infection by a baculovirus GP37. http://www.deepdyve.com/assets/images/DeepDyve-Logo-lg.png Archives of Virology Springer Journals

Synergistic effects of Cydia pomonella granulovirus GP37 on the infectivity of nucleopolyhedroviruses and the lethality of Bacillus thuringiensis

Loading next page...
 
/lp/springer_journal/synergistic-effects-of-cydia-pomonella-granulovirus-gp37-on-the-ZDNXmVG0bN
Publisher
Springer Vienna
Copyright
Copyright © 2011 by Springer-Verlag
Subject
Biomedicine; Virology; Infectious Diseases; Medical Microbiology
ISSN
0304-8608
eISSN
1432-8798
D.O.I.
10.1007/s00705-011-1039-3
Publisher site
See Article on Publisher Site

Abstract

To initiate an efficient primary infection, it is important for baculovirus virions to penetrate through the peritrophic membrane (PM) of the host insect. It is frequently reported that enhancins of baculoviruses significantly enhance viral infection by degrading the various protein components of PMs. However, not all baculoviruses encode enhancins. GP37s of baculoviruses share high amino acid identity with fusolins, synergistic factors found in entomopoxviruses. In this study, a truncated Cydia pomonella granulovirus GP37 was expressed in Escherichia coli . The expressed GP37 effectively bound to chitin, and binding occurred predominantly within 3 h. GP37 altered the protein profiles of Spodoptera exigua PMs, from which a 50-kDa protein was dissociated. Droplet-feeding bioassays indicated that GP37 significantly enhanced the infectivity of nucleopolyhedroviruses (NPVs) and the lethality of Bacillus thuringiensis (Bt) in S. exigua larvae. This is the first demonstration of the enhancement of NPVs and Bt infection by a baculovirus GP37.

Journal

Archives of VirologySpringer Journals

Published: Oct 1, 2011

References

You’re reading a free preview. Subscribe to read the entire article.


DeepDyve is your
personal research library

It’s your single place to instantly
discover and read the research
that matters to you.

Enjoy affordable access to
over 18 million articles from more than
15,000 peer-reviewed journals.

All for just $49/month

Explore the DeepDyve Library

Search

Query the DeepDyve database, plus search all of PubMed and Google Scholar seamlessly

Organize

Save any article or search result from DeepDyve, PubMed, and Google Scholar... all in one place.

Access

Get unlimited, online access to over 18 million full-text articles from more than 15,000 scientific journals.

Your journals are on DeepDyve

Read from thousands of the leading scholarly journals from SpringerNature, Elsevier, Wiley-Blackwell, Oxford University Press and more.

All the latest content is available, no embargo periods.

See the journals in your area

DeepDyve

Freelancer

DeepDyve

Pro

Price

FREE

$49/month
$360/year

Save searches from
Google Scholar,
PubMed

Create lists to
organize your research

Export lists, citations

Read DeepDyve articles

Abstract access only

Unlimited access to over
18 million full-text articles

Print

20 pages / month

PDF Discount

20% off