Symmetry restoring and ancilla-driven entanglement for ultra-cold spin-1 atoms in a three-site ring

Symmetry restoring and ancilla-driven entanglement for ultra-cold spin-1 atoms in a three-site ring The spin-change dynamics of a model with ultra-cold hyperfine-spin-1 atoms confined in an optical superlattice is discussed. First, the disturbance of the two-site dynamics by coupling the dimer to a spin-1 ancilla is analyzed. When the dimer is coupled to the ancilla, even by a weak coupling, the significant changes in the system’s time-evolution processes are observed. Next, we show that for the two-particle case the total hyperfine-spin-singlet state is generated by exploiting a quadratic Zeeman shift with realistic values of the strength of external magnetic field and evolution period of time. Moreover, even in a weak coupling regime, the proper choice of the additional ancilla–dimer interaction results in generating the wave function which is characteristic of the homogeneous three-site ring. In consequence, such wave function exhibits translational invariance symmetry despite the strong asymmetry of the lattice. Furthermore, we present our proposal for extracting various kinds of maximally entangled states (MES) for three-site spin-1 systems, starting from initial product states. In particular, we show that the type of generated MES can be unambiguously recognized by the measurement performed on the ancilla. http://www.deepdyve.com/assets/images/DeepDyve-Logo-lg.png Quantum Information Processing Springer Journals

Symmetry restoring and ancilla-driven entanglement for ultra-cold spin-1 atoms in a three-site ring

Loading next page...
 
/lp/springer_journal/symmetry-restoring-and-ancilla-driven-entanglement-for-ultra-cold-spin-0dHbTjjHJA
Publisher
Springer US
Copyright
Copyright © 2016 by The Author(s)
Subject
Physics; Quantum Information Technology, Spintronics; Quantum Computing; Data Structures, Cryptology and Information Theory; Quantum Physics; Mathematical Physics
ISSN
1570-0755
eISSN
1573-1332
D.O.I.
10.1007/s11128-016-1465-y
Publisher site
See Article on Publisher Site

Abstract

The spin-change dynamics of a model with ultra-cold hyperfine-spin-1 atoms confined in an optical superlattice is discussed. First, the disturbance of the two-site dynamics by coupling the dimer to a spin-1 ancilla is analyzed. When the dimer is coupled to the ancilla, even by a weak coupling, the significant changes in the system’s time-evolution processes are observed. Next, we show that for the two-particle case the total hyperfine-spin-singlet state is generated by exploiting a quadratic Zeeman shift with realistic values of the strength of external magnetic field and evolution period of time. Moreover, even in a weak coupling regime, the proper choice of the additional ancilla–dimer interaction results in generating the wave function which is characteristic of the homogeneous three-site ring. In consequence, such wave function exhibits translational invariance symmetry despite the strong asymmetry of the lattice. Furthermore, we present our proposal for extracting various kinds of maximally entangled states (MES) for three-site spin-1 systems, starting from initial product states. In particular, we show that the type of generated MES can be unambiguously recognized by the measurement performed on the ancilla.

Journal

Quantum Information ProcessingSpringer Journals

Published: Dec 9, 2016

References

You’re reading a free preview. Subscribe to read the entire article.


DeepDyve is your
personal research library

It’s your single place to instantly
discover and read the research
that matters to you.

Enjoy affordable access to
over 18 million articles from more than
15,000 peer-reviewed journals.

All for just $49/month

Explore the DeepDyve Library

Search

Query the DeepDyve database, plus search all of PubMed and Google Scholar seamlessly

Organize

Save any article or search result from DeepDyve, PubMed, and Google Scholar... all in one place.

Access

Get unlimited, online access to over 18 million full-text articles from more than 15,000 scientific journals.

Your journals are on DeepDyve

Read from thousands of the leading scholarly journals from SpringerNature, Elsevier, Wiley-Blackwell, Oxford University Press and more.

All the latest content is available, no embargo periods.

See the journals in your area

DeepDyve

Freelancer

DeepDyve

Pro

Price

FREE

$49/month
$360/year

Save searches from
Google Scholar,
PubMed

Create lists to
organize your research

Export lists, citations

Read DeepDyve articles

Abstract access only

Unlimited access to over
18 million full-text articles

Print

20 pages / month

PDF Discount

20% off