Symmetry restoring and ancilla-driven entanglement for ultra-cold spin-1 atoms in a three-site ring

Symmetry restoring and ancilla-driven entanglement for ultra-cold spin-1 atoms in a three-site ring The spin-change dynamics of a model with ultra-cold hyperfine-spin-1 atoms confined in an optical superlattice is discussed. First, the disturbance of the two-site dynamics by coupling the dimer to a spin-1 ancilla is analyzed. When the dimer is coupled to the ancilla, even by a weak coupling, the significant changes in the system’s time-evolution processes are observed. Next, we show that for the two-particle case the total hyperfine-spin-singlet state is generated by exploiting a quadratic Zeeman shift with realistic values of the strength of external magnetic field and evolution period of time. Moreover, even in a weak coupling regime, the proper choice of the additional ancilla–dimer interaction results in generating the wave function which is characteristic of the homogeneous three-site ring. In consequence, such wave function exhibits translational invariance symmetry despite the strong asymmetry of the lattice. Furthermore, we present our proposal for extracting various kinds of maximally entangled states (MES) for three-site spin-1 systems, starting from initial product states. In particular, we show that the type of generated MES can be unambiguously recognized by the measurement performed on the ancilla. http://www.deepdyve.com/assets/images/DeepDyve-Logo-lg.png Quantum Information Processing Springer Journals

Symmetry restoring and ancilla-driven entanglement for ultra-cold spin-1 atoms in a three-site ring

Loading next page...
 
/lp/springer_journal/symmetry-restoring-and-ancilla-driven-entanglement-for-ultra-cold-spin-0dHbTjjHJA
Publisher
Springer US
Copyright
Copyright © 2016 by The Author(s)
Subject
Physics; Quantum Information Technology, Spintronics; Quantum Computing; Data Structures, Cryptology and Information Theory; Quantum Physics; Mathematical Physics
ISSN
1570-0755
eISSN
1573-1332
D.O.I.
10.1007/s11128-016-1465-y
Publisher site
See Article on Publisher Site

Abstract

The spin-change dynamics of a model with ultra-cold hyperfine-spin-1 atoms confined in an optical superlattice is discussed. First, the disturbance of the two-site dynamics by coupling the dimer to a spin-1 ancilla is analyzed. When the dimer is coupled to the ancilla, even by a weak coupling, the significant changes in the system’s time-evolution processes are observed. Next, we show that for the two-particle case the total hyperfine-spin-singlet state is generated by exploiting a quadratic Zeeman shift with realistic values of the strength of external magnetic field and evolution period of time. Moreover, even in a weak coupling regime, the proper choice of the additional ancilla–dimer interaction results in generating the wave function which is characteristic of the homogeneous three-site ring. In consequence, such wave function exhibits translational invariance symmetry despite the strong asymmetry of the lattice. Furthermore, we present our proposal for extracting various kinds of maximally entangled states (MES) for three-site spin-1 systems, starting from initial product states. In particular, we show that the type of generated MES can be unambiguously recognized by the measurement performed on the ancilla.

Journal

Quantum Information ProcessingSpringer Journals

Published: Dec 9, 2016

References

You’re reading a free preview. Subscribe to read the entire article.


DeepDyve is your
personal research library

It’s your single place to instantly
discover and read the research
that matters to you.

Enjoy affordable access to
over 12 million articles from more than
10,000 peer-reviewed journals.

All for just $49/month

Explore the DeepDyve Library

Unlimited reading

Read as many articles as you need. Full articles with original layout, charts and figures. Read online, from anywhere.

Stay up to date

Keep up with your field with Personalized Recommendations and Follow Journals to get automatic updates.

Organize your research

It’s easy to organize your research with our built-in tools.

Your journals are on DeepDyve

Read from thousands of the leading scholarly journals from SpringerNature, Elsevier, Wiley-Blackwell, Oxford University Press and more.

All the latest content is available, no embargo periods.

See the journals in your area

DeepDyve Freelancer

DeepDyve Pro

Price
FREE
$49/month

$360/year
Save searches from Google Scholar, PubMed
Create lists to organize your research
Export lists, citations
Access to DeepDyve database
Abstract access only
Unlimited access to over
18 million full-text articles
Print
20 pages/month
PDF Discount
20% off