Symmetry-Breaking Phenomena in an Optimization Problem for some Nonlinear Elliptic Equation

Symmetry-Breaking Phenomena in an Optimization Problem for some Nonlinear Elliptic Equation Let $\Omega$ be a bounded domain in ${\bf R^n}$ with Lipschitz boundary, $\lambda >0,$ and $1\le p \le (n+2)/(n-2)$ if $n\ge 3$ and $1\le p< +\infty$ if $n=1,2$. Let $D$ be a measurable subset of $\Omega$ which belongs to the class $ {\cal C}_{\beta}=\{D\subset \Omega \quad | \quad |D|=\beta\} $ for the prescribed $\beta\in (0, |\Omega|).$ For any $D\in{\cal C}_{\beta}$, it is well known that there exists a unique global minimizer $u\in H^1_0(\Omega)$, which we denote by $u_D$, of the functional \(\quad J_{\Omega,D}(v)=\frac12\int_{\Omega}|\nabla v|^2\, dx+\frac{\lambda}{p+1}\int_{\Omega}|v|^{p+1}\, dx -\int_{\Omega}\chi_Dv\,dx \) on $H^1_0(\Omega)$. We consider the optimization problem $ E_{\beta,\Omega}=\inf_{D\in {\cal C}_{\beta}} J_D(u_D) $ and say that a subset $D^*\in {\cal C}_{\beta}$ which attains $E_{\beta,\Omega}$ is an optimal configuration to this problem. In this paper we show the existence, uniqueness and non-uniqueness, and symmetry-preserving and symmetry-breaking phenomena of the optimal configuration $D^*$ to this optimization problem in various settings. http://www.deepdyve.com/assets/images/DeepDyve-Logo-lg.png Applied Mathematics and Optimization Springer Journals

Symmetry-Breaking Phenomena in an Optimization Problem for some Nonlinear Elliptic Equation

Loading next page...
 
/lp/springer_journal/symmetry-breaking-phenomena-in-an-optimization-problem-for-some-BTgC0WUFHj
Publisher
Springer-Verlag
Copyright
Copyright © 2004 by Springer
Subject
Mathematics
ISSN
0095-4616
eISSN
1432-0606
D.O.I.
10.1007/s00245-004-0803-5
Publisher site
See Article on Publisher Site

There are no references for this article.

You’re reading a free preview. Subscribe to read the entire article.


DeepDyve is your
personal research library

It’s your single place to instantly
discover and read the research
that matters to you.

Enjoy affordable access to
over 12 million articles from more than
10,000 peer-reviewed journals.

All for just $49/month

Explore the DeepDyve Library

Unlimited reading

Read as many articles as you need. Full articles with original layout, charts and figures. Read online, from anywhere.

Stay up to date

Keep up with your field with Personalized Recommendations and Follow Journals to get automatic updates.

Organize your research

It’s easy to organize your research with our built-in tools.

Your journals are on DeepDyve

Read from thousands of the leading scholarly journals from SpringerNature, Elsevier, Wiley-Blackwell, Oxford University Press and more.

All the latest content is available, no embargo periods.

See the journals in your area

Monthly Plan

  • Read unlimited articles
  • Personalized recommendations
  • No expiration
  • Print 20 pages per month
  • 20% off on PDF purchases
  • Organize your research
  • Get updates on your journals and topic searches

$49/month

Start Free Trial

14-day Free Trial

Best Deal — 39% off

Annual Plan

  • All the features of the Professional Plan, but for 39% off!
  • Billed annually
  • No expiration
  • For the normal price of 10 articles elsewhere, you get one full year of unlimited access to articles.

$588

$360/year

billed annually
Start Free Trial

14-day Free Trial