Symmetry-Breaking Phenomena in an Optimization Problem for some Nonlinear Elliptic Equation

Symmetry-Breaking Phenomena in an Optimization Problem for some Nonlinear Elliptic Equation Let $\Omega$ be a bounded domain in ${\bf R^n}$ with Lipschitz boundary, $\lambda >0,$ and $1\le p \le (n+2)/(n-2)$ if $n\ge 3$ and $1\le p< +\infty$ if $n=1,2$. Let $D$ be a measurable subset of $\Omega$ which belongs to the class $ {\cal C}_{\beta}=\{D\subset \Omega \quad | \quad |D|=\beta\} $ for the prescribed $\beta\in (0, |\Omega|).$ For any $D\in{\cal C}_{\beta}$, it is well known that there exists a unique global minimizer $u\in H^1_0(\Omega)$, which we denote by $u_D$, of the functional \(\quad J_{\Omega,D}(v)=\frac12\int_{\Omega}|\nabla v|^2\, dx+\frac{\lambda}{p+1}\int_{\Omega}|v|^{p+1}\, dx -\int_{\Omega}\chi_Dv\,dx \) on $H^1_0(\Omega)$. We consider the optimization problem $ E_{\beta,\Omega}=\inf_{D\in {\cal C}_{\beta}} J_D(u_D) $ and say that a subset $D^*\in {\cal C}_{\beta}$ which attains $E_{\beta,\Omega}$ is an optimal configuration to this problem. In this paper we show the existence, uniqueness and non-uniqueness, and symmetry-preserving and symmetry-breaking phenomena of the optimal configuration $D^*$ to this optimization problem in various settings. http://www.deepdyve.com/assets/images/DeepDyve-Logo-lg.png Applied Mathematics and Optimization Springer Journals

Symmetry-Breaking Phenomena in an Optimization Problem for some Nonlinear Elliptic Equation

Loading next page...
 
/lp/springer_journal/symmetry-breaking-phenomena-in-an-optimization-problem-for-some-BTgC0WUFHj
Publisher
Springer Journals
Copyright
Copyright © 2004 by Springer
Subject
Mathematics
ISSN
0095-4616
eISSN
1432-0606
D.O.I.
10.1007/s00245-004-0803-5
Publisher site
See Article on Publisher Site

Abstract

Let $\Omega$ be a bounded domain in ${\bf R^n}$ with Lipschitz boundary, $\lambda >0,$ and $1\le p \le (n+2)/(n-2)$ if $n\ge 3$ and $1\le p< +\infty$ if $n=1,2$. Let $D$ be a measurable subset of $\Omega$ which belongs to the class $ {\cal C}_{\beta}=\{D\subset \Omega \quad | \quad |D|=\beta\} $ for the prescribed $\beta\in (0, |\Omega|).$ For any $D\in{\cal C}_{\beta}$, it is well known that there exists a unique global minimizer $u\in H^1_0(\Omega)$, which we denote by $u_D$, of the functional \(\quad J_{\Omega,D}(v)=\frac12\int_{\Omega}|\nabla v|^2\, dx+\frac{\lambda}{p+1}\int_{\Omega}|v|^{p+1}\, dx -\int_{\Omega}\chi_Dv\,dx \) on $H^1_0(\Omega)$. We consider the optimization problem $ E_{\beta,\Omega}=\inf_{D\in {\cal C}_{\beta}} J_D(u_D) $ and say that a subset $D^*\in {\cal C}_{\beta}$ which attains $E_{\beta,\Omega}$ is an optimal configuration to this problem. In this paper we show the existence, uniqueness and non-uniqueness, and symmetry-preserving and symmetry-breaking phenomena of the optimal configuration $D^*$ to this optimization problem in various settings.

Journal

Applied Mathematics and OptimizationSpringer Journals

Published: Oct 1, 2004

There are no references for this article.

You’re reading a free preview. Subscribe to read the entire article.


DeepDyve is your
personal research library

It’s your single place to instantly
discover and read the research
that matters to you.

Enjoy affordable access to
over 18 million articles from more than
15,000 peer-reviewed journals.

All for just $49/month

Explore the DeepDyve Library

Search

Query the DeepDyve database, plus search all of PubMed and Google Scholar seamlessly

Organize

Save any article or search result from DeepDyve, PubMed, and Google Scholar... all in one place.

Access

Get unlimited, online access to over 18 million full-text articles from more than 15,000 scientific journals.

Your journals are on DeepDyve

Read from thousands of the leading scholarly journals from SpringerNature, Elsevier, Wiley-Blackwell, Oxford University Press and more.

All the latest content is available, no embargo periods.

See the journals in your area

DeepDyve

Freelancer

DeepDyve

Pro

Price

FREE

$49/month
$360/year

Save searches from
Google Scholar,
PubMed

Create lists to
organize your research

Export lists, citations

Read DeepDyve articles

Abstract access only

Unlimited access to over
18 million full-text articles

Print

20 pages / month

PDF Discount

20% off