Access the full text.
Sign up today, get DeepDyve free for 14 days.
D. Harnett, D. Nualart (2011)
Weak convergence of the Stratonovich integral with respect to a class of Gaussian processesStochastic Processes and their Applications, 122
I. Nourdin, D. Nualart, C. Tudor (2007)
Central and non-central limit theorems for weighted power variations of fractional brownian motionAnnales De L Institut Henri Poincare-probabilites Et Statistiques, 46
O. Durieu, Yizao Wang (2015)
From infinite urn schemes to decompositions of self-similar Gaussian processesarXiv: Probability
D. Nualart, G. Peccati (2005)
Central limit theorems for sequences of multiple stochastic integralsAnnals of Probability, 33
D Harnett, D Nualart (2015)
On Simpson’s rule and fractional Brownian motion with $$\text{H} = 1/10$$ H = 1 / 10J. Theor. Probab., 28
C. Houdré, J. Villa (2003)
An Example of Inflnite Dimensional Quasi{Helix
Jason Swanson (2008)
Fluctuations of the empirical quantiles of independent Brownian motionsStochastic Processes and their Applications, 121
Yaozhong Hu, D. Nualart (2009)
Parameter estimation for fractional Ornstein–Uhlenbeck processesStatistics & Probability Letters, 80
I. Nourdin, D. Nualart (2010)
Central Limit Theorems for Multiple Skorokhod IntegralsJournal of Theoretical Probability, 23
D. Nualart, Salvador Ortiz (2007)
Central limit theorems for multiple stochastic integrals and Malliavin calculusStochastic Processes and their Applications, 118
P Billingsley (1999)
Convergence of Probability Measures
Giulia Binotto, I. Nourdin, D. Nualart (2016)
Weak symmetric integrals with respect to the fractional Brownian motionThe Annals of Probability
D. Rodón (2006)
The Malliavin Calculus and Related Topics
G. Peccati, C. Tudor (2005)
Gaussian Limits for Vector-valued Multiple Stochastic Integrals
Jason Swanson (2005)
Weak convergence of the scaled median of independent Brownian motionsProbability Theory and Related Fields, 138
T. Bojdecki, L. Gorostiza, A. Talarczyk (2004)
Sub-fractional Brownian motion and its relation to occupation timesStatistics & Probability Letters, 69
(2014)
On Simpson’s Rule and Fractional Brownian Motion with H=1/10\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$H = 1/10$$
I. Nourdin, Anthony R'eveillac, Jason Swanson (2010)
The weak Stratonovich integral with respect to fractional Brownian motion with Hurst parameter 1/6Electronic Journal of Probability, 15
P. Lei, D. Nualart (2008)
A decomposition of the bifractional Brownian motion and some applicationsStatistics & Probability Letters, 79
D. Harnett, D. Nualart (2015)
Central limit theorem for functionals of a generalized self-similar Gaussian processStochastic Processes and their Applications, 128
M Gradinaru, I Nourdin, F Russo, P Vallois (2005)
$$m$$ m -order integrals and generalized Itô’s formula: the case of a fractional Brownian motion with any Hurst indexAnn. Inst. Henri Poincaré Probab. Stat., 41
M. Gradinaru, I. Nourdin, F. Russo, P. Vallois (2005)
m-order integrals and generalized Ito's formula; the case of a fractional Brownian motion with any Hurst indexAnnales De L Institut Henri Poincare-probabilites Et Statistiques, 41
I. Nourdin, G. Peccati (2012)
Normal Approximations with Malliavin Calculus: From Stein's Method to Universality
P Cheridito, D Nualart (2005)
Stochastic integral of divergence type with respect to fractional Brownian motion with Hurst parameter $$H$$ H in (0, 1/2)Ann. Inst. Henri Poincaré Probab. Stat., 41
(1999)
Convergence of Probability Measures, 2nd edn
I Nourdin, D Nualart, CA Tudor (2010)
Central and non-central limit theorems for weighted power variations of fractional Brownian motionAnn. Inst. Henri Poincaré Probab. Stat., 46
JR Chavez, C Tudor (2009)
A decomposition of sub-fractional Brownian motionMath. Rep., 11
J. Corcuera, D. Nualart, Jeannette Woerner (2006)
Power variation of some integral fractional processesBernoulli, 12
C. Tudor (2005)
Bifractional Brownian motion
Patrick Cheridito, D. Nualart (2005)
Stochastic integral of divergence type with respect to fractional Brownian motion with Hurst parameter H∈(0,12)Annales De L Institut Henri Poincare-probabilites Et Statistiques, 41
D. Harnett, D. Nualart (2011)
Central limit theorem for a Stratonovich integral with Malliavin calculusAnnals of Probability, 41
We study the asymptotic behavior of the $$\nu $$ ν -symmetric Riemann sums for functionals of a self-similar centered Gaussian process X with increment exponent $$0<\alpha <1$$ 0 < α < 1 . We prove that, under mild assumptions on the covariance of X, the law of the weak $$\nu $$ ν -symmetric Riemann sums converge in the Skorohod topology when $$\alpha =(2\ell +1)^{-1}$$ α = ( 2 ℓ + 1 ) - 1 , where $$\ell $$ ℓ denotes the largest positive integer satisfying $$\int _{0}^{1}x^{2j}\nu (\mathrm{d}x)=(2j+1)^{-1}$$ ∫ 0 1 x 2 j ν ( d x ) = ( 2 j + 1 ) - 1 for all $$j=0,\dots , \ell -1$$ j = 0 , ⋯ , ℓ - 1 . In the case $$\alpha >(2\ell +1)^{-1}$$ α > ( 2 ℓ + 1 ) - 1 , we prove that the convergence holds in probability.
Journal of Theoretical Probability – Springer Journals
Published: May 30, 2018
Read and print from thousands of top scholarly journals.
Already have an account? Log in
Bookmark this article. You can see your Bookmarks on your DeepDyve Library.
To save an article, log in first, or sign up for a DeepDyve account if you don’t already have one.
Copy and paste the desired citation format or use the link below to download a file formatted for EndNote
Access the full text.
Sign up today, get DeepDyve free for 14 days.
All DeepDyve websites use cookies to improve your online experience. They were placed on your computer when you launched this website. You can change your cookie settings through your browser.