Symblicit algorithms for mean-payoff and shortest path in monotonic Markov decision processes

Symblicit algorithms for mean-payoff and shortest path in monotonic Markov decision processes When treating Markov decision processes (MDPs) with large state spaces, using explicit representations quickly becomes unfeasible. Lately, Wimmer et al. have proposed a so-called symblicit algorithm for the synthesis of optimal strategies in MDPs, in the quantitative setting of expected mean-payoff. This algorithm, based on the strategy iteration algorithm of Howard and Veinott, efficiently combines symbolic and explicit data structures, and uses binary decision diagrams as symbolic representation. The aim of this paper is to show that the new data structure of pseudo-antichains (an extension of antichains) provides another interesting alternative, especially for the class of monotonic MDPs. We design efficient pseudo-antichain based symblicit algorithms (with open source implementations) for two quantitative settings: the expected mean-payoff and the stochastic shortest path. For two practical applications coming from automated planning and $$\mathsf {LTL}$$ LTL synthesis, we report promising experimental results w.r.t. both the run time and the memory consumption. We also show that a variant of pseudo-antichains allows to handle the infinite state spaces underlying the qualitative verification of probabilistic lossy channel systems. http://www.deepdyve.com/assets/images/DeepDyve-Logo-lg.png Acta Informatica Springer Journals

Symblicit algorithms for mean-payoff and shortest path in monotonic Markov decision processes

Loading next page...
 
/lp/springer_journal/symblicit-algorithms-for-mean-payoff-and-shortest-path-in-monotonic-zYz3nuZmuV
Publisher
Springer Berlin Heidelberg
Copyright
Copyright © 2016 by Springer-Verlag Berlin Heidelberg
Subject
Computer Science; Logics and Meanings of Programs; Computer Systems Organization and Communication Networks; Software Engineering/Programming and Operating Systems; Data Structures, Cryptology and Information Theory; Theory of Computation; Information Systems and Communication Service
ISSN
0001-5903
eISSN
1432-0525
D.O.I.
10.1007/s00236-016-0255-4
Publisher site
See Article on Publisher Site

References

You’re reading a free preview. Subscribe to read the entire article.


DeepDyve is your
personal research library

It’s your single place to instantly
discover and read the research
that matters to you.

Enjoy affordable access to
over 12 million articles from more than
10,000 peer-reviewed journals.

All for just $49/month

Explore the DeepDyve Library

Unlimited reading

Read as many articles as you need. Full articles with original layout, charts and figures. Read online, from anywhere.

Stay up to date

Keep up with your field with Personalized Recommendations and Follow Journals to get automatic updates.

Organize your research

It’s easy to organize your research with our built-in tools.

Your journals are on DeepDyve

Read from thousands of the leading scholarly journals from SpringerNature, Elsevier, Wiley-Blackwell, Oxford University Press and more.

All the latest content is available, no embargo periods.

See the journals in your area

Monthly Plan

  • Read unlimited articles
  • Personalized recommendations
  • No expiration
  • Print 20 pages per month
  • 20% off on PDF purchases
  • Organize your research
  • Get updates on your journals and topic searches

$49/month

Start Free Trial

14-day Free Trial

Best Deal — 39% off

Annual Plan

  • All the features of the Professional Plan, but for 39% off!
  • Billed annually
  • No expiration
  • For the normal price of 10 articles elsewhere, you get one full year of unlimited access to articles.

$588

$360/year

billed annually
Start Free Trial

14-day Free Trial