Symbiotic reactions of sea-buckthorn roots transformed with the pea lectin gene

Symbiotic reactions of sea-buckthorn roots transformed with the pea lectin gene Sea-buckthorn (Hyppopha L.) transgenic roots transformed with the lectin gene were obtained using the wild-type strain of Agrobacterium rhizogenes 15834 preliminary transformed with the plasmid pCAMBIA 1305.1, which contained the full-size pea lectin gene. Effects of lectin gene expression on symbiotic responses of sea-buckthorn to inoculation with rhizobia (Rhizobium leguminosarum, pea symbiont) and actinomycetes of genus Frankia (sea-buckthorn symbiont) were studied. In sea-buckthorn seedlings, whose transgenic roots were inoculated with both microsymbionts simultaneously, atypical nodule-like structures were found along with typical actinorhizal nodules. Random amplified polymorphic DNA (RAPD) analysis of bacteria, isolated from these structures, revealed the presence of R. leguminosarum rhizobia and the absence of Frankia actinomycetes. http://www.deepdyve.com/assets/images/DeepDyve-Logo-lg.png Russian Journal of Plant Physiology Springer Journals

Symbiotic reactions of sea-buckthorn roots transformed with the pea lectin gene

Loading next page...
 
/lp/springer_journal/symbiotic-reactions-of-sea-buckthorn-roots-transformed-with-the-pea-AEB04lejUo
Publisher
SP MAIK Nauka/Interperiodica
Copyright
Copyright © 2010 by Pleiades Publishing, Ltd.
Subject
Life Sciences; Plant Sciences ; Plant Physiology
ISSN
1021-4437
eISSN
1608-3407
D.O.I.
10.1134/S1021443710010140
Publisher site
See Article on Publisher Site

Abstract

Sea-buckthorn (Hyppopha L.) transgenic roots transformed with the lectin gene were obtained using the wild-type strain of Agrobacterium rhizogenes 15834 preliminary transformed with the plasmid pCAMBIA 1305.1, which contained the full-size pea lectin gene. Effects of lectin gene expression on symbiotic responses of sea-buckthorn to inoculation with rhizobia (Rhizobium leguminosarum, pea symbiont) and actinomycetes of genus Frankia (sea-buckthorn symbiont) were studied. In sea-buckthorn seedlings, whose transgenic roots were inoculated with both microsymbionts simultaneously, atypical nodule-like structures were found along with typical actinorhizal nodules. Random amplified polymorphic DNA (RAPD) analysis of bacteria, isolated from these structures, revealed the presence of R. leguminosarum rhizobia and the absence of Frankia actinomycetes.

Journal

Russian Journal of Plant PhysiologySpringer Journals

Published: Jan 12, 2010

References

You’re reading a free preview. Subscribe to read the entire article.


DeepDyve is your
personal research library

It’s your single place to instantly
discover and read the research
that matters to you.

Enjoy affordable access to
over 18 million articles from more than
15,000 peer-reviewed journals.

All for just $49/month

Explore the DeepDyve Library

Search

Query the DeepDyve database, plus search all of PubMed and Google Scholar seamlessly

Organize

Save any article or search result from DeepDyve, PubMed, and Google Scholar... all in one place.

Access

Get unlimited, online access to over 18 million full-text articles from more than 15,000 scientific journals.

Your journals are on DeepDyve

Read from thousands of the leading scholarly journals from SpringerNature, Elsevier, Wiley-Blackwell, Oxford University Press and more.

All the latest content is available, no embargo periods.

See the journals in your area

DeepDyve

Freelancer

DeepDyve

Pro

Price

FREE

$49/month
$360/year

Save searches from
Google Scholar,
PubMed

Create lists to
organize your research

Export lists, citations

Read DeepDyve articles

Abstract access only

Unlimited access to over
18 million full-text articles

Print

20 pages / month

PDF Discount

20% off