Swimming by microscopic organisms in ambient water flow

Swimming by microscopic organisms in ambient water flow When microscopic organisms swim in their natural habitats, they are simultaneously transported by ambient currents, waves, and turbulence. Therefore, to understand how swimming affects the movement of very small creatures through the environment, we need to study their behavior in realistic water flow conditions. The purpose of the work described here was to develop a series of integrated field and laboratory measurements at a variety of scales that enable us to record high-resolution videos of the behavior of microscopic organisms exposed to realistic spatio-temporal patterns of (1) water velocities and (2) distributions of chemical cues that affect their behavior. We have been developing these approaches while studying the swimming behavior in flowing water of the microscopic larvae of various bottom-dwelling marine animals. In shallow marine habitats, the oscillatory water motion associated with waves can make dramatic differences to water flow on the scales that affect trajectories of microscopic larvae. http://www.deepdyve.com/assets/images/DeepDyve-Logo-lg.png Experiments in Fluids Springer Journals

Swimming by microscopic organisms in ambient water flow

Loading next page...
 
/lp/springer_journal/swimming-by-microscopic-organisms-in-ambient-water-flow-z830mnStDS
Publisher
Springer Journals
Copyright
Copyright © 2007 by Springer-Verlag
Subject
Engineering; Engineering Fluid Dynamics; Fluid- and Aerodynamics; Engineering Thermodynamics, Heat and Mass Transfer
ISSN
0723-4864
eISSN
1432-1114
D.O.I.
10.1007/s00348-007-0371-6
Publisher site
See Article on Publisher Site

Abstract

When microscopic organisms swim in their natural habitats, they are simultaneously transported by ambient currents, waves, and turbulence. Therefore, to understand how swimming affects the movement of very small creatures through the environment, we need to study their behavior in realistic water flow conditions. The purpose of the work described here was to develop a series of integrated field and laboratory measurements at a variety of scales that enable us to record high-resolution videos of the behavior of microscopic organisms exposed to realistic spatio-temporal patterns of (1) water velocities and (2) distributions of chemical cues that affect their behavior. We have been developing these approaches while studying the swimming behavior in flowing water of the microscopic larvae of various bottom-dwelling marine animals. In shallow marine habitats, the oscillatory water motion associated with waves can make dramatic differences to water flow on the scales that affect trajectories of microscopic larvae.

Journal

Experiments in FluidsSpringer Journals

Published: Aug 21, 2007

References

You’re reading a free preview. Subscribe to read the entire article.


DeepDyve is your
personal research library

It’s your single place to instantly
discover and read the research
that matters to you.

Enjoy affordable access to
over 18 million articles from more than
15,000 peer-reviewed journals.

All for just $49/month

Explore the DeepDyve Library

Search

Query the DeepDyve database, plus search all of PubMed and Google Scholar seamlessly

Organize

Save any article or search result from DeepDyve, PubMed, and Google Scholar... all in one place.

Access

Get unlimited, online access to over 18 million full-text articles from more than 15,000 scientific journals.

Your journals are on DeepDyve

Read from thousands of the leading scholarly journals from SpringerNature, Elsevier, Wiley-Blackwell, Oxford University Press and more.

All the latest content is available, no embargo periods.

See the journals in your area

DeepDyve

Freelancer

DeepDyve

Pro

Price

FREE

$49/month
$360/year

Save searches from
Google Scholar,
PubMed

Create lists to
organize your research

Export lists, citations

Read DeepDyve articles

Abstract access only

Unlimited access to over
18 million full-text articles

Print

20 pages / month

PDF Discount

20% off