Swelling-Activated K+ Efflux and Regulatory Volume Decrease Efficiency in Human Bronchial Epithelial Cells

Swelling-Activated K+ Efflux and Regulatory Volume Decrease Efficiency in Human Bronchial... This study describes the correlation between cell swelling-induced K+ efflux and volume regulation efficiency evaluated with agents known to modulate ion channel activity and/or intracellular signaling processes in a human bronchial epithelial cell line, 16HBE14o−1. Cells on permeable filter supports, differentiated into polarized monolayers, were monitored continuously at room temperature for changes in cell height (Tc), as an index of cell volume, whereas 86Rb efflux was assessed for K+ channel activity. The sudden reduction in osmolality of both the apical and basolateral perfusates (from 290 to 170 mosmol/kg H2O) evoked a rapid increase in cell volume by 35%. Subsequently, the regulatory volume decrease (RVD) restored cell volume almost completely (to 94% of the isosmotic value). The basolateral 86Rb efflux markedly increased during the hyposmotic shock, from 0.50 ± 0.03 min−1 to a peak value of 6.32 ± 0.07 min−1, while apical 86Rb efflux was negligible. Channel blockers, such as GdCl3 (0.5 mM), quinine (0.5 mM) and 5-nitro-2-(3-phenyl-propylamino) benzoic acid (NPPB, 100 μM), abolished the RVD. The protein tyrosine kinase inhibitors tyrphostin 23 (100 μM) and genistein (150 μM) attenuated the RVD. All agents decreased variably the hyposmosis-induced elevation in 86Rb efflux, whereas NPPB induced a complete block, suggesting a link between basolateral K+ and Cl−1 efflux. Forskolin-mediated activation of adenylyl cyclase stimulated the RVD with a concomitant increase in basolateral 86Rb efflux. These data suggest that the basolateral extrusion of K+ and Cl−1 from 16HBE14o−1 cells in response to cell swelling determines RVD efficiency. http://www.deepdyve.com/assets/images/DeepDyve-Logo-lg.png The Journal of Membrane Biology Springer Journals

Swelling-Activated K+ Efflux and Regulatory Volume Decrease Efficiency in Human Bronchial Epithelial Cells

Loading next page...
 
/lp/springer_journal/swelling-activated-k-efflux-and-regulatory-volume-decrease-efficiency-RijkNjB2yK
Publisher
Springer-Verlag
Copyright
Copyright © 2007 by Springer Science+Business Media, LLC
Subject
Life Sciences; Biochemistry, general; Human Physiology
ISSN
0022-2631
eISSN
1432-1424
D.O.I.
10.1007/s00232-006-0048-8
Publisher site
See Article on Publisher Site

Abstract

This study describes the correlation between cell swelling-induced K+ efflux and volume regulation efficiency evaluated with agents known to modulate ion channel activity and/or intracellular signaling processes in a human bronchial epithelial cell line, 16HBE14o−1. Cells on permeable filter supports, differentiated into polarized monolayers, were monitored continuously at room temperature for changes in cell height (Tc), as an index of cell volume, whereas 86Rb efflux was assessed for K+ channel activity. The sudden reduction in osmolality of both the apical and basolateral perfusates (from 290 to 170 mosmol/kg H2O) evoked a rapid increase in cell volume by 35%. Subsequently, the regulatory volume decrease (RVD) restored cell volume almost completely (to 94% of the isosmotic value). The basolateral 86Rb efflux markedly increased during the hyposmotic shock, from 0.50 ± 0.03 min−1 to a peak value of 6.32 ± 0.07 min−1, while apical 86Rb efflux was negligible. Channel blockers, such as GdCl3 (0.5 mM), quinine (0.5 mM) and 5-nitro-2-(3-phenyl-propylamino) benzoic acid (NPPB, 100 μM), abolished the RVD. The protein tyrosine kinase inhibitors tyrphostin 23 (100 μM) and genistein (150 μM) attenuated the RVD. All agents decreased variably the hyposmosis-induced elevation in 86Rb efflux, whereas NPPB induced a complete block, suggesting a link between basolateral K+ and Cl−1 efflux. Forskolin-mediated activation of adenylyl cyclase stimulated the RVD with a concomitant increase in basolateral 86Rb efflux. These data suggest that the basolateral extrusion of K+ and Cl−1 from 16HBE14o−1 cells in response to cell swelling determines RVD efficiency.

Journal

The Journal of Membrane BiologySpringer Journals

Published: Jun 2, 2007

References

You’re reading a free preview. Subscribe to read the entire article.


DeepDyve is your
personal research library

It’s your single place to instantly
discover and read the research
that matters to you.

Enjoy affordable access to
over 18 million articles from more than
15,000 peer-reviewed journals.

All for just $49/month

Explore the DeepDyve Library

Search

Query the DeepDyve database, plus search all of PubMed and Google Scholar seamlessly

Organize

Save any article or search result from DeepDyve, PubMed, and Google Scholar... all in one place.

Access

Get unlimited, online access to over 18 million full-text articles from more than 15,000 scientific journals.

Your journals are on DeepDyve

Read from thousands of the leading scholarly journals from SpringerNature, Elsevier, Wiley-Blackwell, Oxford University Press and more.

All the latest content is available, no embargo periods.

See the journals in your area

DeepDyve

Freelancer

DeepDyve

Pro

Price

FREE

$49/month
$360/year

Save searches from
Google Scholar,
PubMed

Create lists to
organize your research

Export lists, citations

Read DeepDyve articles

Abstract access only

Unlimited access to over
18 million full-text articles

Print

20 pages / month

PDF Discount

20% off