Get 20M+ Full-Text Papers For Less Than $1.50/day. Start a 14-Day Trial for You or Your Team.

Learn More →

SWCNT–Ag nanowire composite for transparent stretchable film heater with enhanced electrical stability

SWCNT–Ag nanowire composite for transparent stretchable film heater with enhanced electrical... The mechanical stability of transparent and stretchable electrode materials is essential for their application in stretchable electronic devices. In this work, single-walled carbon nanotube (SWCNT)–silver nanowire (Ag NW) composite films were developed as electrode materials to improve the thermal stability and anti-electromigration characteristics of transparent stretchable film heaters. By adjusting the mixing ratio of SWCNT–Ag NW suspensions, the mechanical and anti-electromigration properties of SWCNT–Ag NW composite films were systematically investigated. Compared to pristine Ag NW film, the 75:1 SWCNT–Ag NW composite film exhibited an excellent thermal stability, improved anti-electromigration properties, and low sheet resistance of 62.3 Ω/sq with an optical transmittance of 83.4%. Moreover, the same composite film prepared on VHB substrate showed only 23.2% increase in the relative sheet resistance after 1000 times of stretching cycles under the tensile stress. Furthermore, the stretchable film heater with 75:1 SWCNT–Ag NW composite electrode exhibited an improved thermal and mechanical stability even after being exposed to 1000 stretching cycles with a peak strain of 200%. http://www.deepdyve.com/assets/images/DeepDyve-Logo-lg.png Journal of Materials Science Springer Journals

SWCNT–Ag nanowire composite for transparent stretchable film heater with enhanced electrical stability

Loading next page...
 
/lp/springer_journal/swcnt-ag-nanowire-composite-for-transparent-stretchable-film-heater-0AIaPlFipf
Publisher
Springer Journals
Copyright
Copyright © 2018 by Springer Science+Business Media, LLC, part of Springer Nature
Subject
Materials Science; Materials Science, general; Characterization and Evaluation of Materials; Polymer Sciences; Continuum Mechanics and Mechanics of Materials; Crystallography and Scattering Methods; Classical Mechanics
ISSN
0022-2461
eISSN
1573-4803
DOI
10.1007/s10853-018-2526-7
Publisher site
See Article on Publisher Site

Abstract

The mechanical stability of transparent and stretchable electrode materials is essential for their application in stretchable electronic devices. In this work, single-walled carbon nanotube (SWCNT)–silver nanowire (Ag NW) composite films were developed as electrode materials to improve the thermal stability and anti-electromigration characteristics of transparent stretchable film heaters. By adjusting the mixing ratio of SWCNT–Ag NW suspensions, the mechanical and anti-electromigration properties of SWCNT–Ag NW composite films were systematically investigated. Compared to pristine Ag NW film, the 75:1 SWCNT–Ag NW composite film exhibited an excellent thermal stability, improved anti-electromigration properties, and low sheet resistance of 62.3 Ω/sq with an optical transmittance of 83.4%. Moreover, the same composite film prepared on VHB substrate showed only 23.2% increase in the relative sheet resistance after 1000 times of stretching cycles under the tensile stress. Furthermore, the stretchable film heater with 75:1 SWCNT–Ag NW composite electrode exhibited an improved thermal and mechanical stability even after being exposed to 1000 stretching cycles with a peak strain of 200%.

Journal

Journal of Materials ScienceSpringer Journals

Published: Jun 4, 2018

References