Access the full text.
Sign up today, get DeepDyve free for 14 days.
This paper develops near-optimal sustainable harvesting strategies for the predator in a predator-prey system. The objective function is of long-run average per unit time type in the path-wise sense. To date, ecological systems under environmental noise are usually modeled as stochastic differential equations driven by a Brownian motion. Recognizing that the formulation using a Brownian motion is only an idealization, in this paper, it is assumed that the environment is subject to disturbances characterized by a jump process with rapid jump rates. Under broad conditions, it is shown that the systems under consideration can be approximated by a controlled diffusion system. Based on the limit diffusion system, control policies of the original systems are constructed. Such an approach enables us to develop sustainable harvesting policies leading to near optimality. To treat the underlying problems, one of the main difficulties is due to the long-run average objective function. This in turn, requires the handling of a number of issues related to ergodicity. New approaches are developed to obtain the tightness of the underlying processes based on the population dynamic systems.
Applied Mathematics and Optimization – Springer Journals
Published: Apr 28, 2020
Read and print from thousands of top scholarly journals.
Already have an account? Log in
Bookmark this article. You can see your Bookmarks on your DeepDyve Library.
To save an article, log in first, or sign up for a DeepDyve account if you don’t already have one.
Copy and paste the desired citation format or use the link below to download a file formatted for EndNote
Access the full text.
Sign up today, get DeepDyve free for 14 days.
All DeepDyve websites use cookies to improve your online experience. They were placed on your computer when you launched this website. You can change your cookie settings through your browser.