Survivable virtual topology mapping in IP-over-WDM networks using differential evolution optimization

Survivable virtual topology mapping in IP-over-WDM networks using differential evolution... In IP-over-wavelength division multiplexing networks, a virtual topology is placed over the physical topology of the optical network. Given that a simple link failure or a node failure on the physical topology can cause a significant loss of information, an important challenge is to make the routing of the virtual topology on to the physical topology survivable. This problem is known as survivable virtual topology mapping (SVTM) and is known to be an NP-complete problem. So far, this problem has been optimally solved for small instances by the application of integer linear programming and has been sub-optimally solved for more realistic instances by heuristic strategies such as ant colony optimization and genetic algorithms. In this paper, we introduce the application of differential evolution (DE) to solve the SVTM problem and enhancements based on DE are proposed as well. Three algorithms based on DE are developed. The enhanced variants have better convergence rate, get better quality of solutions and require few control parameters. We present the impact of these parameters on the system’s performance improvement. Algorithms are evaluated in different test bench optical networks, as NSFnet and USA, demonstrating that the enhanced DE algorithm overcomes the other two, for small instances. The three algorithms reach a 100  survivable mapping for small instances. The three algorithms also find positive survivable mappings and reduce the network wavelength links. Results show the effectiveness and efficiency of the proposed algorithms. Photonic Network Communications Springer Journals

Survivable virtual topology mapping in IP-over-WDM networks using differential evolution optimization

Loading next page...
Springer US
Copyright © 2014 by Springer Science+Business Media New York
Computer Science; Computer Communication Networks; Electrical Engineering; Characterization and Evaluation of Materials
Publisher site
See Article on Publisher Site


You’re reading a free preview. Subscribe to read the entire article.

DeepDyve is your
personal research library

It’s your single place to instantly
discover and read the research
that matters to you.

Enjoy affordable access to
over 12 million articles from more than
10,000 peer-reviewed journals.

All for just $49/month

Explore the DeepDyve Library

Unlimited reading

Read as many articles as you need. Full articles with original layout, charts and figures. Read online, from anywhere.

Stay up to date

Keep up with your field with Personalized Recommendations and Follow Journals to get automatic updates.

Organize your research

It’s easy to organize your research with our built-in tools.

Your journals are on DeepDyve

Read from thousands of the leading scholarly journals from SpringerNature, Elsevier, Wiley-Blackwell, Oxford University Press and more.

All the latest content is available, no embargo periods.

See the journals in your area

Monthly Plan

  • Read unlimited articles
  • Personalized recommendations
  • No expiration
  • Print 20 pages per month
  • 20% off on PDF purchases
  • Organize your research
  • Get updates on your journals and topic searches


Start Free Trial

14-day Free Trial

Best Deal — 39% off

Annual Plan

  • All the features of the Professional Plan, but for 39% off!
  • Billed annually
  • No expiration
  • For the normal price of 10 articles elsewhere, you get one full year of unlimited access to articles.



billed annually
Start Free Trial

14-day Free Trial