Surfactant turbulent drag reduction in an enclosed rotating disk apparatus

Surfactant turbulent drag reduction in an enclosed rotating disk apparatus An enclosed rotating disk apparatus (RDA) with rotational speed up to 5,500 rpm and with temperature control from −5 to 55°C was designed to screen the turbulent drag reducing effectiveness of small samples of newly synthesized drag reducing additives. First, the rotating disk was calibrated with water using both logarithmic and power law models. Then experiments were carried out to measure the frictional torque reduction for a drag reducing aqueous cationic surfactant system (5 mM Ethoquad O12 with 12.5 mM sodium salicylate) over a range of Re. The maximum drag reduction at 30°C was about 47% at Re = 1.90 × 106. For the first time, results with the RDA were compared with those in a circular pipe flow system. They showed similar trends indicating it is a useful screening device for small samples, giving conservative estimates of surfactant effectiveness compared with pipe flow. http://www.deepdyve.com/assets/images/DeepDyve-Logo-lg.png Experiments in Fluids Springer Journals

Surfactant turbulent drag reduction in an enclosed rotating disk apparatus

Loading next page...
 
/lp/springer_journal/surfactant-turbulent-drag-reduction-in-an-enclosed-rotating-disk-vYIVDNkdFC
Publisher
Springer Journals
Copyright
Copyright © 2007 by Springer-Verlag
Subject
Engineering; Engineering Fluid Dynamics; Fluid- and Aerodynamics; Engineering Thermodynamics, Heat and Mass Transfer
ISSN
0723-4864
eISSN
1432-1114
D.O.I.
10.1007/s00348-007-0253-y
Publisher site
See Article on Publisher Site

Abstract

An enclosed rotating disk apparatus (RDA) with rotational speed up to 5,500 rpm and with temperature control from −5 to 55°C was designed to screen the turbulent drag reducing effectiveness of small samples of newly synthesized drag reducing additives. First, the rotating disk was calibrated with water using both logarithmic and power law models. Then experiments were carried out to measure the frictional torque reduction for a drag reducing aqueous cationic surfactant system (5 mM Ethoquad O12 with 12.5 mM sodium salicylate) over a range of Re. The maximum drag reduction at 30°C was about 47% at Re = 1.90 × 106. For the first time, results with the RDA were compared with those in a circular pipe flow system. They showed similar trends indicating it is a useful screening device for small samples, giving conservative estimates of surfactant effectiveness compared with pipe flow.

Journal

Experiments in FluidsSpringer Journals

Published: Feb 2, 2007

References

You’re reading a free preview. Subscribe to read the entire article.


DeepDyve is your
personal research library

It’s your single place to instantly
discover and read the research
that matters to you.

Enjoy affordable access to
over 18 million articles from more than
15,000 peer-reviewed journals.

All for just $49/month

Explore the DeepDyve Library

Search

Query the DeepDyve database, plus search all of PubMed and Google Scholar seamlessly

Organize

Save any article or search result from DeepDyve, PubMed, and Google Scholar... all in one place.

Access

Get unlimited, online access to over 18 million full-text articles from more than 15,000 scientific journals.

Your journals are on DeepDyve

Read from thousands of the leading scholarly journals from SpringerNature, Elsevier, Wiley-Blackwell, Oxford University Press and more.

All the latest content is available, no embargo periods.

See the journals in your area

DeepDyve

Freelancer

DeepDyve

Pro

Price

FREE

$49/month
$360/year

Save searches from
Google Scholar,
PubMed

Create lists to
organize your research

Export lists, citations

Read DeepDyve articles

Abstract access only

Unlimited access to over
18 million full-text articles

Print

20 pages / month

PDF Discount

20% off