Access the full text.
Sign up today, get DeepDyve free for 14 days.
C. Rito (2007)
On surfaces with pAnn. Sc. Norm. Super. Pisa Cl. Sci. (5), 6
Igor Reider (1988)
Vector bundles of rank 2 and linear systems on algebraic surfacesAnnals of Mathematics, 127
E. Mistretta, F. Polizzi (2007)
Standard isotrivial fibrations with p_g=q=1, IIJournal of Pure and Applied Algebra, 214
Lei Zhang (2010)
Surfaces with $p_g = q= 1$, $K^2 = 7$ and non-birational bicanonical mpas
T. Fujita (1978)
On Kähler fiber spaces over curvesJournal of The Mathematical Society of Japan, 30
G. Xiao (1990)
DEGREE OF THE BICANONICAL MAP OF A SURFACE OF GENERAL TYPEAmerican Journal of Mathematics, 112
Giuseppe Borrelli (2007)
The classification of surfaces of general type with nonbirational bicanonical mapJournal of Algebraic Geometry, 16
F. Polizzi (2006)
On Surfaces of General Type with p g = q = 1 Isogenous to a Product of CurvesCommunications in Algebra, 36
G. Pirola (2002)
Surfaces with pg=q=3manuscripta mathematica, 108
R. Pignatelli (2009)
Some (big) irreducible components of the moduli space of minimal surfaces of general type with pAtti Accad. Naz. Lincei Rend. Lincei Mat. Appl., 20
A. Beauville (1982)
L?in�galit�s pBull. Soc. Math. France, 110
W. P. Barth, K. Hulek, C. Peters (2004)
Compact Complex Surfaces. Second edition. Ergebnisse der Mathematik und ihrer Grenzgebiete. 3. Folge. A Series of Modern Surveys in Mathematics [Results in Mathematics and Related Areas. 3rd Series. A Series of Modern Surveys in Mathematics]
Ihrer Grenzgebiete, Theorie Der, Konvexen Körper (1975)
Ergebnisse der Mathematik und ihrer GrenzgebieteSums of Independent Random Variables
Giuseppe Borrelli (2009)
Surfaces with pg = q = 1, K2 = 8 and nonbirational bicanonical mapmanuscripta mathematica, 130
F. Polizzi (2009)
Standard isotrivial fibrations with pJ. Algebra, 321
M. Nagata (1960)
On rational surfaces I. Irreducible curves of arithmetic genus $0$ or $1$, 32
(1982)
L’inégalités pg ≥ 2q−4 pour les surfaces de type général, Appendix to: Inegalites numeriques pour les surfaces de type general
E. P. F. Mistretta (2010)
Standard isotrivial fibrations with pII. J. Pure Appl. Algebra, 214
F. Sakai (1984)
Weil divisors on normal surfacesDuke Mathematical Journal, 51
L. Zhang (2015)
Surfaces with pGeom. Dedicata, 177
Carlos Rito (2008)
On equations of double planes with pg=q=1Math. Comput., 79
F. Polizzi (2005)
On surfaces of general type with $p_g=q=1, K^2=3$Collectanea Mathematica, 56
R. Pignatelli (2008)
Some (big) irreducible components of the moduli space of minimal surfaces of general type with $p_g=q=1$ and $K^2=4$arXiv: Algebraic Geometry
A. Beauville (1996)
Complex Algebraic Surfaces
M. Atiyah (1957)
Vector Bundles Over an Elliptic CurveProceedings of The London Mathematical Society
F. Catanese, F. Ciliberto (1991)
Surfaces with pSympos. Math., 32
Carlos Rito (2005)
On surfaces with $p_g=q=1$ and non-ruled bicanonical involutionarXiv: Algebraic Geometry
A. Beauville (1996)
Complex algebraic surfaces, Translated from the 1978 French original by R. Barlow, with assistance from N. I. Shepherd-Barron and M. Reid
F. Polizzi (2003)
Surfaces of general type with $p_g=q=1, K^2=8$ and bicanonical map of degree $2$Transactions of the American Mathematical Society, 358
Carlos Rito (2008)
Involutions on surfaces with $p_g=q=1$arXiv: Algebraic Geometry
F. Catanese (2010)
On a Class of Surfaces of General Type
F. Catanese, F. Hirzebruch (1999)
Singular Bidouble Covers and the Construction of Interesting Algebraic Surfaces
Xiao Gang (1985)
Surfaces Fibrees en Courbes de Genre Deux
G. Borrelli (2009)
Surfaces with pManuscripta Math., 130
M. Nagata (1960)
On rational surfacesI. Irreducible curves of arithmetic genus 0 or 1. Mem. Coll. Sci. Univ. Kyoto Ser. A Math., 32
G. Xiao (1985)
Surfaces Fibr�es en Courbes de Genre Deux. (French) [Surfaces fibered by curves of genus two]_Lecture Notes in Mathematics
Y. Miyaoka (1984)
The maximal number of quotient singularities on surfaces with given numerical invariantsMathematische Annalen, 268
C. Catanese, Mendes-Lopes Francia, Borrelli (2005)
On surfaces of general type with . . .
C. Rito (2010)
Involutions on surfaces with pCollect. Math., 61
F. Polizzi (2006)
Surfaces of general type with pTrans. Amer. Math. Soc., 358
Let S be a smooth minimal projective surface of general type with p g (S) = q(S) = 1, K S 2 = 6. We prove that the degree of the bicanonical map of S is 1 or 2. So if S has non-birational bicanonical map, then it is a double cover over either a rational surface or a K3 surface.
Acta Mathematica Sinica, English Series – Springer Journals
Published: May 18, 2018
Read and print from thousands of top scholarly journals.
Already have an account? Log in
Bookmark this article. You can see your Bookmarks on your DeepDyve Library.
To save an article, log in first, or sign up for a DeepDyve account if you don’t already have one.
Copy and paste the desired citation format or use the link below to download a file formatted for EndNote
Access the full text.
Sign up today, get DeepDyve free for 14 days.
All DeepDyve websites use cookies to improve your online experience. They were placed on your computer when you launched this website. You can change your cookie settings through your browser.