Surface Structure and Adsorption Characteristics of COOH-Functionalized Multi-Wall Carbon Nanotubes

Surface Structure and Adsorption Characteristics of COOH-Functionalized Multi-Wall Carbon Nanotubes Carbon-based nanomaterials with functionalized surface are widely used in water treatment, agriculture, hydrogen storage, and biology. The current study deals with characterization of engineered multi-wall carbon nanotubes (MWCNT) prior and after chemical modification in nitric acid for 1 and 2 h. It was shown that MWCNT surface area increased from 70 m2/g (pristine material) to 149 m2/g after 2 h modification, and the surface became hydrophilic. According to back-titration method the functional surface group concentration increased almost three times after 2 h treatment compared to 1 h modification. The results of thermogravimetric analysis (TGA) have shown good correspondence with functional COOH-group concentration of samples. Total pore volume and specific surface area were calculated using non-local density functional theory (NLDFT) and Brunaeur-Emmet-Teller (BET) models. Studied functionalized MWCNTs form stable water dispersions and show great potential for biological agricultural applications. http://www.deepdyve.com/assets/images/DeepDyve-Logo-lg.png BioNanoScience Springer Journals

Surface Structure and Adsorption Characteristics of COOH-Functionalized Multi-Wall Carbon Nanotubes

Loading next page...
 
/lp/springer_journal/surface-structure-and-adsorption-characteristics-of-cooh-0Dm40Aku0L
Publisher
Springer Journals
Copyright
Copyright © 2017 by Springer Science+Business Media, LLC
Subject
Engineering; Circuits and Systems; Biological and Medical Physics, Biophysics; Nanotechnology; Biomaterials
ISSN
2191-1630
eISSN
2191-1649
D.O.I.
10.1007/s12668-017-0442-y
Publisher site
See Article on Publisher Site

Abstract

Carbon-based nanomaterials with functionalized surface are widely used in water treatment, agriculture, hydrogen storage, and biology. The current study deals with characterization of engineered multi-wall carbon nanotubes (MWCNT) prior and after chemical modification in nitric acid for 1 and 2 h. It was shown that MWCNT surface area increased from 70 m2/g (pristine material) to 149 m2/g after 2 h modification, and the surface became hydrophilic. According to back-titration method the functional surface group concentration increased almost three times after 2 h treatment compared to 1 h modification. The results of thermogravimetric analysis (TGA) have shown good correspondence with functional COOH-group concentration of samples. Total pore volume and specific surface area were calculated using non-local density functional theory (NLDFT) and Brunaeur-Emmet-Teller (BET) models. Studied functionalized MWCNTs form stable water dispersions and show great potential for biological agricultural applications.

Journal

BioNanoScienceSpringer Journals

Published: Aug 10, 2017

References

You’re reading a free preview. Subscribe to read the entire article.


DeepDyve is your
personal research library

It’s your single place to instantly
discover and read the research
that matters to you.

Enjoy affordable access to
over 18 million articles from more than
15,000 peer-reviewed journals.

All for just $49/month

Explore the DeepDyve Library

Search

Query the DeepDyve database, plus search all of PubMed and Google Scholar seamlessly

Organize

Save any article or search result from DeepDyve, PubMed, and Google Scholar... all in one place.

Access

Get unlimited, online access to over 18 million full-text articles from more than 15,000 scientific journals.

Your journals are on DeepDyve

Read from thousands of the leading scholarly journals from SpringerNature, Elsevier, Wiley-Blackwell, Oxford University Press and more.

All the latest content is available, no embargo periods.

See the journals in your area

DeepDyve

Freelancer

DeepDyve

Pro

Price

FREE

$49/month
$360/year

Save searches from
Google Scholar,
PubMed

Create lists to
organize your research

Export lists, citations

Read DeepDyve articles

Abstract access only

Unlimited access to over
18 million full-text articles

Print

20 pages / month

PDF Discount

20% off