Surface roughness prediction as a classification problem using support vector machine

Surface roughness prediction as a classification problem using support vector machine In order to achieve a high level of product quality, it is imperative to gain a high degree of predictability especially in automated manufacturing setup. Surface finish is one of the most important measures for determining the quality of products in machining. Therefore, accurate predictive models for surface finish are needed. This paper utilizes vibration signals that are experimentally obtained during the end milling of aluminum plates at different cutting conditions. Several features are extracted by processing the acquired signals in both the time and frequency domains. The feature sets include statistical parameters, fast Fourier transforms (FFT) spectra, and the wavelet packets. This work introduces a classifier based on a support vector machine to analyze the set of features in order to predict the type of surface finish. Experiments are conducted for three different types of kernels and parameter configurations. One objective is to examine the effect of feature reduction on the performance of the proposed classifier using three different feature selection algorithms. Another objective is to compare the results with k-nearest neighbor, decision tree, and random forest classifiers. The results show the effectiveness of feature reduction and support vector machine in the success of the proposed classifier. http://www.deepdyve.com/assets/images/DeepDyve-Logo-lg.png The International Journal of Advanced Manufacturing Technology Springer Journals

Surface roughness prediction as a classification problem using support vector machine

Loading next page...
 
/lp/springer_journal/surface-roughness-prediction-as-a-classification-problem-using-support-eJjhBCWfg9
Publisher
Springer Journals
Copyright
Copyright © 2017 by Springer-Verlag London
Subject
Engineering; Industrial and Production Engineering; Media Management; Mechanical Engineering; Computer-Aided Engineering (CAD, CAE) and Design
ISSN
0268-3768
eISSN
1433-3015
D.O.I.
10.1007/s00170-017-0165-9
Publisher site
See Article on Publisher Site

Abstract

In order to achieve a high level of product quality, it is imperative to gain a high degree of predictability especially in automated manufacturing setup. Surface finish is one of the most important measures for determining the quality of products in machining. Therefore, accurate predictive models for surface finish are needed. This paper utilizes vibration signals that are experimentally obtained during the end milling of aluminum plates at different cutting conditions. Several features are extracted by processing the acquired signals in both the time and frequency domains. The feature sets include statistical parameters, fast Fourier transforms (FFT) spectra, and the wavelet packets. This work introduces a classifier based on a support vector machine to analyze the set of features in order to predict the type of surface finish. Experiments are conducted for three different types of kernels and parameter configurations. One objective is to examine the effect of feature reduction on the performance of the proposed classifier using three different feature selection algorithms. Another objective is to compare the results with k-nearest neighbor, decision tree, and random forest classifiers. The results show the effectiveness of feature reduction and support vector machine in the success of the proposed classifier.

Journal

The International Journal of Advanced Manufacturing TechnologySpringer Journals

Published: Mar 3, 2017

References

You’re reading a free preview. Subscribe to read the entire article.


DeepDyve is your
personal research library

It’s your single place to instantly
discover and read the research
that matters to you.

Enjoy affordable access to
over 18 million articles from more than
15,000 peer-reviewed journals.

All for just $49/month

Explore the DeepDyve Library

Search

Query the DeepDyve database, plus search all of PubMed and Google Scholar seamlessly

Organize

Save any article or search result from DeepDyve, PubMed, and Google Scholar... all in one place.

Access

Get unlimited, online access to over 18 million full-text articles from more than 15,000 scientific journals.

Your journals are on DeepDyve

Read from thousands of the leading scholarly journals from SpringerNature, Elsevier, Wiley-Blackwell, Oxford University Press and more.

All the latest content is available, no embargo periods.

See the journals in your area

DeepDyve

Freelancer

DeepDyve

Pro

Price

FREE

$49/month
$360/year

Save searches from
Google Scholar,
PubMed

Create lists to
organize your research

Export lists, citations

Read DeepDyve articles

Abstract access only

Unlimited access to over
18 million full-text articles

Print

20 pages / month

PDF Discount

20% off