Surface roughness modeling in micro end-milling

Surface roughness modeling in micro end-milling Micro end-milling is widely used in many industries to produce micro products with complex 3D shapes. The accurate modeling and prediction of surface roughness are important for evaluating the productivity of the machine tools and the surface quality of the machined parts. This paper presents an accurate surface roughness model based on the kinematics of cutting process and tool geometry by considering the effects of tool run-out and minimum chip thickness. The proposed surface roughness model is validated by micro end-milling experiments with the miniaturized machine tool. The results show that the proposed surface roughness model can accurately predict both the trends and magnitude of the surface roughness in micro end-milling. http://www.deepdyve.com/assets/images/DeepDyve-Logo-lg.png The International Journal of Advanced Manufacturing Technology Springer Journals
Loading next page...
 
/lp/springer_journal/surface-roughness-modeling-in-micro-end-milling-idn8vbMN7K
Publisher
Springer London
Copyright
Copyright © 2017 by Springer-Verlag London Ltd.
Subject
Engineering; Industrial and Production Engineering; Media Management; Mechanical Engineering; Computer-Aided Engineering (CAD, CAE) and Design
ISSN
0268-3768
eISSN
1433-3015
D.O.I.
10.1007/s00170-017-1278-x
Publisher site
See Article on Publisher Site

Abstract

Micro end-milling is widely used in many industries to produce micro products with complex 3D shapes. The accurate modeling and prediction of surface roughness are important for evaluating the productivity of the machine tools and the surface quality of the machined parts. This paper presents an accurate surface roughness model based on the kinematics of cutting process and tool geometry by considering the effects of tool run-out and minimum chip thickness. The proposed surface roughness model is validated by micro end-milling experiments with the miniaturized machine tool. The results show that the proposed surface roughness model can accurately predict both the trends and magnitude of the surface roughness in micro end-milling.

Journal

The International Journal of Advanced Manufacturing TechnologySpringer Journals

Published: Nov 12, 2017

References

You’re reading a free preview. Subscribe to read the entire article.


DeepDyve is your
personal research library

It’s your single place to instantly
discover and read the research
that matters to you.

Enjoy affordable access to
over 18 million articles from more than
15,000 peer-reviewed journals.

All for just $49/month

Explore the DeepDyve Library

Search

Query the DeepDyve database, plus search all of PubMed and Google Scholar seamlessly

Organize

Save any article or search result from DeepDyve, PubMed, and Google Scholar... all in one place.

Access

Get unlimited, online access to over 18 million full-text articles from more than 15,000 scientific journals.

Your journals are on DeepDyve

Read from thousands of the leading scholarly journals from SpringerNature, Elsevier, Wiley-Blackwell, Oxford University Press and more.

All the latest content is available, no embargo periods.

See the journals in your area

DeepDyve

Freelancer

DeepDyve

Pro

Price

FREE

$49/month
$360/year

Save searches from
Google Scholar,
PubMed

Create lists to
organize your research

Export lists, citations

Read DeepDyve articles

Abstract access only

Unlimited access to over
18 million full-text articles

Print

20 pages / month

PDF Discount

20% off