Surface roughness modeling in micro end-milling

Surface roughness modeling in micro end-milling Micro end-milling is widely used in many industries to produce micro products with complex 3D shapes. The accurate modeling and prediction of surface roughness are important for evaluating the productivity of the machine tools and the surface quality of the machined parts. This paper presents an accurate surface roughness model based on the kinematics of cutting process and tool geometry by considering the effects of tool run-out and minimum chip thickness. The proposed surface roughness model is validated by micro end-milling experiments with the miniaturized machine tool. The results show that the proposed surface roughness model can accurately predict both the trends and magnitude of the surface roughness in micro end-milling. http://www.deepdyve.com/assets/images/DeepDyve-Logo-lg.png The International Journal of Advanced Manufacturing Technology Springer Journals
Loading next page...
 
/lp/springer_journal/surface-roughness-modeling-in-micro-end-milling-idn8vbMN7K
Publisher
Springer London
Copyright
Copyright © 2017 by Springer-Verlag London Ltd.
Subject
Engineering; Industrial and Production Engineering; Media Management; Mechanical Engineering; Computer-Aided Engineering (CAD, CAE) and Design
ISSN
0268-3768
eISSN
1433-3015
D.O.I.
10.1007/s00170-017-1278-x
Publisher site
See Article on Publisher Site

Abstract

Micro end-milling is widely used in many industries to produce micro products with complex 3D shapes. The accurate modeling and prediction of surface roughness are important for evaluating the productivity of the machine tools and the surface quality of the machined parts. This paper presents an accurate surface roughness model based on the kinematics of cutting process and tool geometry by considering the effects of tool run-out and minimum chip thickness. The proposed surface roughness model is validated by micro end-milling experiments with the miniaturized machine tool. The results show that the proposed surface roughness model can accurately predict both the trends and magnitude of the surface roughness in micro end-milling.

Journal

The International Journal of Advanced Manufacturing TechnologySpringer Journals

Published: Nov 12, 2017

References

You’re reading a free preview. Subscribe to read the entire article.


DeepDyve is your
personal research library

It’s your single place to instantly
discover and read the research
that matters to you.

Enjoy affordable access to
over 12 million articles from more than
10,000 peer-reviewed journals.

All for just $49/month

Explore the DeepDyve Library

Unlimited reading

Read as many articles as you need. Full articles with original layout, charts and figures. Read online, from anywhere.

Stay up to date

Keep up with your field with Personalized Recommendations and Follow Journals to get automatic updates.

Organize your research

It’s easy to organize your research with our built-in tools.

Your journals are on DeepDyve

Read from thousands of the leading scholarly journals from SpringerNature, Elsevier, Wiley-Blackwell, Oxford University Press and more.

All the latest content is available, no embargo periods.

See the journals in your area

DeepDyve Freelancer

DeepDyve Pro

Price
FREE
$49/month

$360/year
Save searches from Google Scholar, PubMed
Create lists to organize your research
Export lists, citations
Read DeepDyve articles
Abstract access only
Unlimited access to over
18 million full-text articles
Print
20 pages/month
PDF Discount
20% off