Surface pH at the Basolateral Membrane of the Caecal Mucosa of Guinea Pig

Surface pH at the Basolateral Membrane of the Caecal Mucosa of Guinea Pig Since the major mechanisms responsible for regulation of intracellular pH of enterocytes are located in the basolateral membrane, respective effects may be expected on pH in the compartment near the basolateral membrane. A method was established to estimate the pH at the basolateral membrane (pH b ) of isolated caecal epithelia of guinea pig using pH-sensitive fluorescein attached to lectin (lens culinaris). In the presence of bicarbonate and a perfusion solution-pH of 7.4, pH b was 7.70 ± 0.15. In the absence of bicarbonate or chloride as well as by inhibition of the basolateral Cl−-HCO− 3 exchange with H2-DIDS, pH b was reduced near to solution-pH. Inhibition of the basolateral Na+-H+ exchanger by adding a sodium- and bicarbonate-free, low-buffered solution increased pH b . Decrease of pH of serosal perfusion solution to 6.4 provoked a similar decrease of pH b to solution pH. Short-chain fatty acids (SCFA) added to the mucosal solution caused a slight decrease of pH b . SCFA added to the serosal side alkalized pH b . However, in the presence of bicarbonate pH b returned quickly to the initial pH b , and after removal of SCFA a transient acidification of pH b was seen. These responses could not be inhibited by MIA or H2-DIDS. We conclude that no constant pH-microclimate exists at the basolateral side. The regulation of the intracellular pH of enterocytes reflects pH b . The slightly alkaline pH b is due to the bicarbonate efflux. Data support the presence of an SCFA−-HCO− 3 exchange. http://www.deepdyve.com/assets/images/DeepDyve-Logo-lg.png The Journal of Membrane Biology Springer Journals

Surface pH at the Basolateral Membrane of the Caecal Mucosa of Guinea Pig

Loading next page...
 
/lp/springer_journal/surface-ph-at-the-basolateral-membrane-of-the-caecal-mucosa-of-guinea-pkY3scfsfc
Publisher
Springer-Verlag
Copyright
Copyright © Inc. by 1999 Springer-Verlag New York
Subject
Life Sciences; Biochemistry, general; Human Physiology
ISSN
0022-2631
eISSN
1432-1424
D.O.I.
10.1007/s002329900523
Publisher site
See Article on Publisher Site

There are no references for this article.

You’re reading a free preview. Subscribe to read the entire article.


DeepDyve is your
personal research library

It’s your single place to instantly
discover and read the research
that matters to you.

Enjoy affordable access to
over 12 million articles from more than
10,000 peer-reviewed journals.

All for just $49/month

Explore the DeepDyve Library

Unlimited reading

Read as many articles as you need. Full articles with original layout, charts and figures. Read online, from anywhere.

Stay up to date

Keep up with your field with Personalized Recommendations and Follow Journals to get automatic updates.

Organize your research

It’s easy to organize your research with our built-in tools.

Your journals are on DeepDyve

Read from thousands of the leading scholarly journals from SpringerNature, Elsevier, Wiley-Blackwell, Oxford University Press and more.

All the latest content is available, no embargo periods.

See the journals in your area

Monthly Plan

  • Read unlimited articles
  • Personalized recommendations
  • No expiration
  • Print 20 pages per month
  • 20% off on PDF purchases
  • Organize your research
  • Get updates on your journals and topic searches

$49/month

Start Free Trial

14-day Free Trial

Best Deal — 39% off

Annual Plan

  • All the features of the Professional Plan, but for 39% off!
  • Billed annually
  • No expiration
  • For the normal price of 10 articles elsewhere, you get one full year of unlimited access to articles.

$588

$360/year

billed annually
Start Free Trial

14-day Free Trial