Surface instabilities of thin liquid film flow on a rotating disk

Surface instabilities of thin liquid film flow on a rotating disk  Steady flow of a liquid jet from a nozzle onto the centre of a rotating disk is studied with a streak line method to determine the superficial velocity of the spreading liquid film. Good agreement is found with an asymptotic analysis of the unperturbed flow field. Experimentally, the liquid surface is always perturbed by surface waves which appear as regular spirals, steady in the laboratory system in the low Reynolds number range. It could be shown that wave formation is very sensitive to entrance conditions. Therefore, it is assumed that wave generation is an entrance effect which acts as periodic forcing on the forming liquid film. Wave velocities outside the entrance region are measured and proved to be in good agreement with the prediction of a linear stability theory, as long as the flow rate and entrance perturbations are small. At higher flow rates or stronger disturbances, the radial development of the wave velocities takes on the characteristics predicted by nonlinear stability theories and is in qualitative agreement with experiments performed on an inclined plane. http://www.deepdyve.com/assets/images/DeepDyve-Logo-lg.png Experiments in Fluids Springer Journals

Surface instabilities of thin liquid film flow on a rotating disk

Loading next page...
 
/lp/springer_journal/surface-instabilities-of-thin-liquid-film-flow-on-a-rotating-disk-SzYiP0XgIL
Publisher
Springer-Verlag
Copyright
Copyright © 1999 by Springer-Verlag Berlin Heidelberg
Subject
Engineering; Engineering Fluid Dynamics; Fluid- and Aerodynamics; Engineering Thermodynamics, Heat and Mass Transfer
ISSN
0723-4864
eISSN
1432-1114
D.O.I.
10.1007/s003480050266
Publisher site
See Article on Publisher Site

Abstract

 Steady flow of a liquid jet from a nozzle onto the centre of a rotating disk is studied with a streak line method to determine the superficial velocity of the spreading liquid film. Good agreement is found with an asymptotic analysis of the unperturbed flow field. Experimentally, the liquid surface is always perturbed by surface waves which appear as regular spirals, steady in the laboratory system in the low Reynolds number range. It could be shown that wave formation is very sensitive to entrance conditions. Therefore, it is assumed that wave generation is an entrance effect which acts as periodic forcing on the forming liquid film. Wave velocities outside the entrance region are measured and proved to be in good agreement with the prediction of a linear stability theory, as long as the flow rate and entrance perturbations are small. At higher flow rates or stronger disturbances, the radial development of the wave velocities takes on the characteristics predicted by nonlinear stability theories and is in qualitative agreement with experiments performed on an inclined plane.

Journal

Experiments in FluidsSpringer Journals

Published: Jan 1, 1999

There are no references for this article.

You’re reading a free preview. Subscribe to read the entire article.


DeepDyve is your
personal research library

It’s your single place to instantly
discover and read the research
that matters to you.

Enjoy affordable access to
over 18 million articles from more than
15,000 peer-reviewed journals.

All for just $49/month

Explore the DeepDyve Library

Search

Query the DeepDyve database, plus search all of PubMed and Google Scholar seamlessly

Organize

Save any article or search result from DeepDyve, PubMed, and Google Scholar... all in one place.

Access

Get unlimited, online access to over 18 million full-text articles from more than 15,000 scientific journals.

Your journals are on DeepDyve

Read from thousands of the leading scholarly journals from SpringerNature, Elsevier, Wiley-Blackwell, Oxford University Press and more.

All the latest content is available, no embargo periods.

See the journals in your area

DeepDyve

Freelancer

DeepDyve

Pro

Price

FREE

$49/month
$360/year

Save searches from
Google Scholar,
PubMed

Create lists to
organize your research

Export lists, citations

Read DeepDyve articles

Abstract access only

Unlimited access to over
18 million full-text articles

Print

20 pages / month

PDF Discount

20% off