Surface grinding of CFRP composites with rotary ultrasonic machining: a mechanistic model on cutting force in the feed direction

Surface grinding of CFRP composites with rotary ultrasonic machining: a mechanistic model on... For carbon fiber-reinforced plastic (CFRP) composite components, especially advanced CFRP components with complex three-dimensional features, surface grinding is often needed to generate final dimensions and functional surfaces. Surface damages are frequently induced during surface grinding, reducing the load-bearing capability and service life of the components. Therefore, it is desirable to perform surface grinding of CFRP in a high-quality and high-efficiency way. Rotary ultrasonic machining (RUM) surface grinding has been investigated to machine CFRP for improved surface quality. Cutting force is one of the most important output variables for evaluating RUM surface grinding. The modeling of cutting force is essential to effectively control the occurrence of surface damages during RUM surface grinding of CFRP. In the RUM surface grinding process, the workpiece material is primarily removed by abrasives on the tool peripheral surface, thus it is essential to investigate the feed-direction cutting force model. However, such models are not available in the literature. In this study, for the first time, a mechanistic feed-direction cutting force model in RUM surface grinding of CFRP is established based on the assumption that the material is removed by brittle fracture. The mechanistic model has one parameter, fracture volume factor of the workpiece material, which needs to be determined by an experiment. There is a good consistency between theoretically predicted trends and experimentally observed results on the relationships between feed-direction cutting force and input variables. http://www.deepdyve.com/assets/images/DeepDyve-Logo-lg.png The International Journal of Advanced Manufacturing Technology Springer Journals

Surface grinding of CFRP composites with rotary ultrasonic machining: a mechanistic model on cutting force in the feed direction

Loading next page...
 
/lp/springer_journal/surface-grinding-of-cfrp-composites-with-rotary-ultrasonic-machining-a-qWgcL752V5
Publisher
Springer London
Copyright
Copyright © 2017 by Springer-Verlag London
Subject
Engineering; Industrial and Production Engineering; Media Management; Mechanical Engineering; Computer-Aided Engineering (CAD, CAE) and Design
ISSN
0268-3768
eISSN
1433-3015
D.O.I.
10.1007/s00170-017-0149-9
Publisher site
See Article on Publisher Site

Abstract

For carbon fiber-reinforced plastic (CFRP) composite components, especially advanced CFRP components with complex three-dimensional features, surface grinding is often needed to generate final dimensions and functional surfaces. Surface damages are frequently induced during surface grinding, reducing the load-bearing capability and service life of the components. Therefore, it is desirable to perform surface grinding of CFRP in a high-quality and high-efficiency way. Rotary ultrasonic machining (RUM) surface grinding has been investigated to machine CFRP for improved surface quality. Cutting force is one of the most important output variables for evaluating RUM surface grinding. The modeling of cutting force is essential to effectively control the occurrence of surface damages during RUM surface grinding of CFRP. In the RUM surface grinding process, the workpiece material is primarily removed by abrasives on the tool peripheral surface, thus it is essential to investigate the feed-direction cutting force model. However, such models are not available in the literature. In this study, for the first time, a mechanistic feed-direction cutting force model in RUM surface grinding of CFRP is established based on the assumption that the material is removed by brittle fracture. The mechanistic model has one parameter, fracture volume factor of the workpiece material, which needs to be determined by an experiment. There is a good consistency between theoretically predicted trends and experimentally observed results on the relationships between feed-direction cutting force and input variables.

Journal

The International Journal of Advanced Manufacturing TechnologySpringer Journals

Published: Mar 9, 2017

References

You’re reading a free preview. Subscribe to read the entire article.


DeepDyve is your
personal research library

It’s your single place to instantly
discover and read the research
that matters to you.

Enjoy affordable access to
over 18 million articles from more than
15,000 peer-reviewed journals.

All for just $49/month

Explore the DeepDyve Library

Search

Query the DeepDyve database, plus search all of PubMed and Google Scholar seamlessly

Organize

Save any article or search result from DeepDyve, PubMed, and Google Scholar... all in one place.

Access

Get unlimited, online access to over 18 million full-text articles from more than 15,000 scientific journals.

Your journals are on DeepDyve

Read from thousands of the leading scholarly journals from SpringerNature, Elsevier, Wiley-Blackwell, Oxford University Press and more.

All the latest content is available, no embargo periods.

See the journals in your area

DeepDyve

Freelancer

DeepDyve

Pro

Price

FREE

$49/month
$360/year

Save searches from
Google Scholar,
PubMed

Create lists to
organize your research

Export lists, citations

Read DeepDyve articles

Abstract access only

Unlimited access to over
18 million full-text articles

Print

20 pages / month

PDF Discount

20% off