Surface flow visualization using the thermal wakes of small heated spots

Surface flow visualization using the thermal wakes of small heated spots  This note describes a surface flow visualization technique which uses the thermal wakes of an array of small heated spots to infer the local flow direction. The thermal wake is made visible using wide band thermochromic liquid crystals. The technique is illustrated using the endwall flow under a horseshoe vortex at the base of a right circular cylinder in a turbulent boundary layer. Comparisons to results generated using the oil of wintergreen technique were in good agreement. In addition to surface flow direction, the technique has the potential to be used to measure the heat transfer coefficient at each spot. Data are presented in terms of photographs of the actual visualization surface. The techniques is suitable for low speed flows. http://www.deepdyve.com/assets/images/DeepDyve-Logo-lg.png Experiments in Fluids Springer Journals

Surface flow visualization using the thermal wakes of small heated spots

Loading next page...
 
/lp/springer_journal/surface-flow-visualization-using-the-thermal-wakes-of-small-heated-n5tK2VoIO3
Publisher
Springer-Verlag
Copyright
Copyright © 1998 by Springer-Verlag Berlin Heidelberg
Subject
Engineering; Engineering Fluid Dynamics; Fluid- and Aerodynamics; Engineering Thermodynamics, Heat and Mass Transfer
ISSN
0723-4864
eISSN
1432-1114
D.O.I.
10.1007/s003480050213
Publisher site
See Article on Publisher Site

Abstract

 This note describes a surface flow visualization technique which uses the thermal wakes of an array of small heated spots to infer the local flow direction. The thermal wake is made visible using wide band thermochromic liquid crystals. The technique is illustrated using the endwall flow under a horseshoe vortex at the base of a right circular cylinder in a turbulent boundary layer. Comparisons to results generated using the oil of wintergreen technique were in good agreement. In addition to surface flow direction, the technique has the potential to be used to measure the heat transfer coefficient at each spot. Data are presented in terms of photographs of the actual visualization surface. The techniques is suitable for low speed flows.

Journal

Experiments in FluidsSpringer Journals

Published: Jul 17, 1998

There are no references for this article.

You’re reading a free preview. Subscribe to read the entire article.


DeepDyve is your
personal research library

It’s your single place to instantly
discover and read the research
that matters to you.

Enjoy affordable access to
over 18 million articles from more than
15,000 peer-reviewed journals.

All for just $49/month

Explore the DeepDyve Library

Search

Query the DeepDyve database, plus search all of PubMed and Google Scholar seamlessly

Organize

Save any article or search result from DeepDyve, PubMed, and Google Scholar... all in one place.

Access

Get unlimited, online access to over 18 million full-text articles from more than 15,000 scientific journals.

Your journals are on DeepDyve

Read from thousands of the leading scholarly journals from SpringerNature, Elsevier, Wiley-Blackwell, Oxford University Press and more.

All the latest content is available, no embargo periods.

See the journals in your area

DeepDyve

Freelancer

DeepDyve

Pro

Price

FREE

$49/month
$360/year

Save searches from
Google Scholar,
PubMed

Create lists to
organize your research

Export lists, citations

Read DeepDyve articles

Abstract access only

Unlimited access to over
18 million full-text articles

Print

20 pages / month

PDF Discount

20% off