Surface dipole ordering in submicron polydiphenylenephthalide films

Surface dipole ordering in submicron polydiphenylenephthalide films This work is dedicated to the elucidation of surface dipole ordering in nanoscale thin polymer layers. The experimental study of submicron-film dielectric electroactive polydiphenylenephthalide polymer has revealed that it is composed of the side phthalide groups with a relatively large dipole moment. The interest in this polymer is due to the abnormally high conductivity of the polymer/polymer interface, which has previously been associated with the possible superficial ordering of phthalide groups. Piezoresponse force microscopy has been used to explore the surface of submicron films produced by centrifugation. The manifestation of the spontaneous polarization indicates the dipole ordering. Besides this, the polarization and relaxation in samples with different thicknesses have been investigated in order to determine the volume and the surface contribution to the polarization films. A reduction in the thickness is established to amplify the piezoelectric response of the signal and the electrically generated domains acquire the ideal radial shape. This confirms the predominant contribution to the orientation processes from the surface layers of the polymer film. The polarization switching manifested as the alteration of the contrast of the piezoelectric response signal in the applied different-polarity fields has been highlighted. The presence of these surface phenomena is involved to explain the unique electronic properties of the interfaces in the polar organic dielectrics. http://www.deepdyve.com/assets/images/DeepDyve-Logo-lg.png Russian Microelectronics Springer Journals

Surface dipole ordering in submicron polydiphenylenephthalide films

Loading next page...
 
/lp/springer_journal/surface-dipole-ordering-in-submicron-polydiphenylenephthalide-films-FV3cl3g7eI
Publisher
Springer Journals
Copyright
Copyright © 2016 by Pleiades Publishing, Ltd.
Subject
Engineering; Electrical Engineering
ISSN
1063-7397
eISSN
1608-3415
D.O.I.
10.1134/S1063739716080059
Publisher site
See Article on Publisher Site

Abstract

This work is dedicated to the elucidation of surface dipole ordering in nanoscale thin polymer layers. The experimental study of submicron-film dielectric electroactive polydiphenylenephthalide polymer has revealed that it is composed of the side phthalide groups with a relatively large dipole moment. The interest in this polymer is due to the abnormally high conductivity of the polymer/polymer interface, which has previously been associated with the possible superficial ordering of phthalide groups. Piezoresponse force microscopy has been used to explore the surface of submicron films produced by centrifugation. The manifestation of the spontaneous polarization indicates the dipole ordering. Besides this, the polarization and relaxation in samples with different thicknesses have been investigated in order to determine the volume and the surface contribution to the polarization films. A reduction in the thickness is established to amplify the piezoelectric response of the signal and the electrically generated domains acquire the ideal radial shape. This confirms the predominant contribution to the orientation processes from the surface layers of the polymer film. The polarization switching manifested as the alteration of the contrast of the piezoelectric response signal in the applied different-polarity fields has been highlighted. The presence of these surface phenomena is involved to explain the unique electronic properties of the interfaces in the polar organic dielectrics.

Journal

Russian MicroelectronicsSpringer Journals

Published: Mar 8, 2017

References

You’re reading a free preview. Subscribe to read the entire article.


DeepDyve is your
personal research library

It’s your single place to instantly
discover and read the research
that matters to you.

Enjoy affordable access to
over 18 million articles from more than
15,000 peer-reviewed journals.

All for just $49/month

Explore the DeepDyve Library

Search

Query the DeepDyve database, plus search all of PubMed and Google Scholar seamlessly

Organize

Save any article or search result from DeepDyve, PubMed, and Google Scholar... all in one place.

Access

Get unlimited, online access to over 18 million full-text articles from more than 15,000 scientific journals.

Your journals are on DeepDyve

Read from thousands of the leading scholarly journals from SpringerNature, Elsevier, Wiley-Blackwell, Oxford University Press and more.

All the latest content is available, no embargo periods.

See the journals in your area

DeepDyve

Freelancer

DeepDyve

Pro

Price

FREE

$49/month
$360/year

Save searches from
Google Scholar,
PubMed

Create lists to
organize your research

Export lists, citations

Read DeepDyve articles

Abstract access only

Unlimited access to over
18 million full-text articles

Print

20 pages / month

PDF Discount

20% off