Sure enough: efficient Bayesian learning and choice

Sure enough: efficient Bayesian learning and choice Probabilistic decision-making is a general phenomenon in animal behavior, and has often been interpreted to reflect the relative certainty of animals’ beliefs. Extensive neurological and behavioral results increasingly suggest that animal beliefs may be represented as probability distributions, with explicit accounting of uncertainty. Accordingly, we develop a model that describes decision-making in a manner consistent with this understanding of neuronal function in learning and conditioning. This first-order Markov, recursive Bayesian algorithm is as parsimonious as its minimalist point-estimate, Rescorla–Wagner analogue. We show that the Bayesian algorithm can reproduce naturalistic patterns of probabilistic foraging, in simulations of an experiment in bumblebees. We go on to show that the Bayesian algorithm can efficiently describe the behavior of several heuristic models of decision-making, and is consistent with the ubiquitous variation in choice that we observe within and between individuals in implementing heuristic decision-making. By describing learning and decision-making in a single Bayesian framework, we believe we can realistically unify descriptions of behavior across contexts and organisms. A unified cognitive model of this kind may facilitate descriptions of behavioral evolution. http://www.deepdyve.com/assets/images/DeepDyve-Logo-lg.png Animal Cognition Springer Journals

Sure enough: efficient Bayesian learning and choice

Loading next page...
 
/lp/springer_journal/sure-enough-efficient-bayesian-learning-and-choice-eUrtZyqC68
Publisher
Springer Berlin Heidelberg
Copyright
Copyright © 2017 by Springer-Verlag GmbH Germany
Subject
Life Sciences; Behavioral Sciences; Zoology; Psychology Research
ISSN
1435-9448
eISSN
1435-9456
D.O.I.
10.1007/s10071-017-1107-5
Publisher site
See Article on Publisher Site

Abstract

Probabilistic decision-making is a general phenomenon in animal behavior, and has often been interpreted to reflect the relative certainty of animals’ beliefs. Extensive neurological and behavioral results increasingly suggest that animal beliefs may be represented as probability distributions, with explicit accounting of uncertainty. Accordingly, we develop a model that describes decision-making in a manner consistent with this understanding of neuronal function in learning and conditioning. This first-order Markov, recursive Bayesian algorithm is as parsimonious as its minimalist point-estimate, Rescorla–Wagner analogue. We show that the Bayesian algorithm can reproduce naturalistic patterns of probabilistic foraging, in simulations of an experiment in bumblebees. We go on to show that the Bayesian algorithm can efficiently describe the behavior of several heuristic models of decision-making, and is consistent with the ubiquitous variation in choice that we observe within and between individuals in implementing heuristic decision-making. By describing learning and decision-making in a single Bayesian framework, we believe we can realistically unify descriptions of behavior across contexts and organisms. A unified cognitive model of this kind may facilitate descriptions of behavioral evolution.

Journal

Animal CognitionSpringer Journals

Published: Jul 1, 2017

References

You’re reading a free preview. Subscribe to read the entire article.


DeepDyve is your
personal research library

It’s your single place to instantly
discover and read the research
that matters to you.

Enjoy affordable access to
over 18 million articles from more than
15,000 peer-reviewed journals.

All for just $49/month

Explore the DeepDyve Library

Search

Query the DeepDyve database, plus search all of PubMed and Google Scholar seamlessly

Organize

Save any article or search result from DeepDyve, PubMed, and Google Scholar... all in one place.

Access

Get unlimited, online access to over 18 million full-text articles from more than 15,000 scientific journals.

Your journals are on DeepDyve

Read from thousands of the leading scholarly journals from SpringerNature, Elsevier, Wiley-Blackwell, Oxford University Press and more.

All the latest content is available, no embargo periods.

See the journals in your area

DeepDyve

Freelancer

DeepDyve

Pro

Price

FREE

$49/month
$360/year

Save searches from
Google Scholar,
PubMed

Create lists to
organize your research

Export lists, citations

Read DeepDyve articles

Abstract access only

Unlimited access to over
18 million full-text articles

Print

20 pages / month

PDF Discount

20% off