Supramolecular self-assembly of block copolymer based on rigid surfactant

Supramolecular self-assembly of block copolymer based on rigid surfactant The supramolecular self-assembling of pyridine-containing amphiphilic block copolymers (PS-b- P4VP and PS-PI-P2VP) and 4-biphenylcarboxylic acid (BPCA) in selective solvents has been systematically studied. BPCA molecules are able to complex with the vinylpyridine (VP) moieties through hydrogen bonding, which leads to a transformation of spherical block copolymer micelles into structured nanofibers in solutions. The effects of molar ratio of BPCA to the VP repeat units, solvent selectivity, and copolymer composition on the supramolecular complex nanofiber formation have been systematically investigated by atomic force microscopy (AFM), transmission electron microscopy (TEM), and scanning electron microscopy (SEM). The formation mechanism of supramolecular self-assembly nanofibers was discussed. http://www.deepdyve.com/assets/images/DeepDyve-Logo-lg.png Russian Journal of Applied Chemistry Springer Journals

Supramolecular self-assembly of block copolymer based on rigid surfactant

Loading next page...
 
/lp/springer_journal/supramolecular-self-assembly-of-block-copolymer-based-on-rigid-Sk1kqwn7sI
Publisher
Springer Journals
Copyright
Copyright © 2016 by Pleiades Publishing, Ltd.
Subject
Chemistry; Chemistry/Food Science, general; Industrial Chemistry/Chemical Engineering
ISSN
1070-4272
eISSN
1608-3296
D.O.I.
10.1134/S1070427216080218
Publisher site
See Article on Publisher Site

Abstract

The supramolecular self-assembling of pyridine-containing amphiphilic block copolymers (PS-b- P4VP and PS-PI-P2VP) and 4-biphenylcarboxylic acid (BPCA) in selective solvents has been systematically studied. BPCA molecules are able to complex with the vinylpyridine (VP) moieties through hydrogen bonding, which leads to a transformation of spherical block copolymer micelles into structured nanofibers in solutions. The effects of molar ratio of BPCA to the VP repeat units, solvent selectivity, and copolymer composition on the supramolecular complex nanofiber formation have been systematically investigated by atomic force microscopy (AFM), transmission electron microscopy (TEM), and scanning electron microscopy (SEM). The formation mechanism of supramolecular self-assembly nanofibers was discussed.

Journal

Russian Journal of Applied ChemistrySpringer Journals

Published: Nov 24, 2016

References

You’re reading a free preview. Subscribe to read the entire article.


DeepDyve is your
personal research library

It’s your single place to instantly
discover and read the research
that matters to you.

Enjoy affordable access to
over 18 million articles from more than
15,000 peer-reviewed journals.

All for just $49/month

Explore the DeepDyve Library

Search

Query the DeepDyve database, plus search all of PubMed and Google Scholar seamlessly

Organize

Save any article or search result from DeepDyve, PubMed, and Google Scholar... all in one place.

Access

Get unlimited, online access to over 18 million full-text articles from more than 15,000 scientific journals.

Your journals are on DeepDyve

Read from thousands of the leading scholarly journals from SpringerNature, Elsevier, Wiley-Blackwell, Oxford University Press and more.

All the latest content is available, no embargo periods.

See the journals in your area

DeepDyve

Freelancer

DeepDyve

Pro

Price

FREE

$49/month
$360/year

Save searches from
Google Scholar,
PubMed

Create lists to
organize your research

Export lists, citations

Read DeepDyve articles

Abstract access only

Unlimited access to over
18 million full-text articles

Print

20 pages / month

PDF Discount

20% off