Supporting exact indexing of arbitrarily rotated shapes and periodic time series under Euclidean and warping distance measures

Supporting exact indexing of arbitrarily rotated shapes and periodic time series under Euclidean... Shape matching and indexing is important topic in its own right, and is a fundamental subroutine in most shape data mining algorithms. Given the ubiquity of shape, shape matching is an important problem with applications in domains as diverse as biometrics, industry, medicine, zoology and anthropology. The distance/similarity measure for used for shape matching must be invariant to many distortions, including scale, offset, noise, articulation, partial occlusion, etc. Most of these distortions are relatively easy to handle, either in the representation of the data or in the similarity measure used. However, rotation invariance is noted in the literature as being an especially difficult challenge. Current approaches typically try to achieve rotation invariance in the representation of the data, at the expense of discrimination ability, or in the distance measure, at the expense of efficiency. In this work, we show that we can take the slow but accurate approaches and dramatically speed them up. On real world problems our technique can take current approaches and make them four orders of magnitude faster without false dismissals. Moreover, our technique can be used with any of the dozens of existing shape representations and with all the most popular distance measures including Euclidean distance, dynamic time warping and Longest Common Subsequence. We further show that our indexing technique can be used to index star light curves, an important type of astronomical data, without modification. http://www.deepdyve.com/assets/images/DeepDyve-Logo-lg.png The VLDB Journal Springer Journals

Supporting exact indexing of arbitrarily rotated shapes and periodic time series under Euclidean and warping distance measures

Loading next page...
 
/lp/springer_journal/supporting-exact-indexing-of-arbitrarily-rotated-shapes-and-periodic-CpeiHls4d6
Publisher
Springer-Verlag
Copyright
Copyright © 2009 by Springer-Verlag
Subject
Computer Science; Database Management
ISSN
1066-8888
eISSN
0949-877X
D.O.I.
10.1007/s00778-008-0111-4
Publisher site
See Article on Publisher Site

Abstract

Shape matching and indexing is important topic in its own right, and is a fundamental subroutine in most shape data mining algorithms. Given the ubiquity of shape, shape matching is an important problem with applications in domains as diverse as biometrics, industry, medicine, zoology and anthropology. The distance/similarity measure for used for shape matching must be invariant to many distortions, including scale, offset, noise, articulation, partial occlusion, etc. Most of these distortions are relatively easy to handle, either in the representation of the data or in the similarity measure used. However, rotation invariance is noted in the literature as being an especially difficult challenge. Current approaches typically try to achieve rotation invariance in the representation of the data, at the expense of discrimination ability, or in the distance measure, at the expense of efficiency. In this work, we show that we can take the slow but accurate approaches and dramatically speed them up. On real world problems our technique can take current approaches and make them four orders of magnitude faster without false dismissals. Moreover, our technique can be used with any of the dozens of existing shape representations and with all the most popular distance measures including Euclidean distance, dynamic time warping and Longest Common Subsequence. We further show that our indexing technique can be used to index star light curves, an important type of astronomical data, without modification.

Journal

The VLDB JournalSpringer Journals

Published: Jun 1, 2009

References

You’re reading a free preview. Subscribe to read the entire article.


DeepDyve is your
personal research library

It’s your single place to instantly
discover and read the research
that matters to you.

Enjoy affordable access to
over 18 million articles from more than
15,000 peer-reviewed journals.

All for just $49/month

Explore the DeepDyve Library

Search

Query the DeepDyve database, plus search all of PubMed and Google Scholar seamlessly

Organize

Save any article or search result from DeepDyve, PubMed, and Google Scholar... all in one place.

Access

Get unlimited, online access to over 18 million full-text articles from more than 15,000 scientific journals.

Your journals are on DeepDyve

Read from thousands of the leading scholarly journals from SpringerNature, Elsevier, Wiley-Blackwell, Oxford University Press and more.

All the latest content is available, no embargo periods.

See the journals in your area

DeepDyve

Freelancer

DeepDyve

Pro

Price

FREE

$49/month
$360/year

Save searches from
Google Scholar,
PubMed

Create lists to
organize your research

Export lists, citations

Read DeepDyve articles

Abstract access only

Unlimited access to over
18 million full-text articles

Print

20 pages / month

PDF Discount

20% off