Get 20M+ Full-Text Papers For Less Than $1.50/day. Start a 14-Day Trial for You or Your Team.

Learn More →

Supported N-propylsulfamic acid onto Fe3O4 magnetic nanoparticles as a reusable and efficient nanocatalyst for the protection/deprotection of hydroxyl groups and protection of aldehydes

Supported N-propylsulfamic acid onto Fe3O4 magnetic nanoparticles as a reusable and efficient... N-propylsulfamic acid supported onto Fe3O4 magnetic nanoparticles (MNPs-PSA) as an efficient and magnetically reusable nanocatalyst has been reported for the tetrahydropyranylation/depyranylation of a wide variety of alcohols and phenols by changing the solvent medium. Also, the protection of aldehydes as acylals using Ac2O in the presence of catalytic amount MNPs-PSA in good to high yields at room temperature under solvent-free conditions is described. After completing the reaction, the catalyst was easily separated from the reaction mixture with the assistance of an external magnetic field and reused for several consecutive runs without significant loss of their catalytic efficiency. http://www.deepdyve.com/assets/images/DeepDyve-Logo-lg.png Research on Chemical Intermediates Springer Journals

Supported N-propylsulfamic acid onto Fe3O4 magnetic nanoparticles as a reusable and efficient nanocatalyst for the protection/deprotection of hydroxyl groups and protection of aldehydes

Loading next page...
 
/lp/springer_journal/supported-n-propylsulfamic-acid-onto-fe3o4-magnetic-nanoparticles-as-a-eJFJnrQ00O

References (6)

Publisher
Springer Journals
Copyright
Copyright © 2015 by Springer Science+Business Media Dordrecht
Subject
Chemistry; Catalysis; Physical Chemistry; Inorganic Chemistry
ISSN
0922-6168
eISSN
1568-5675
DOI
10.1007/s11164-015-2239-3
Publisher site
See Article on Publisher Site

Abstract

N-propylsulfamic acid supported onto Fe3O4 magnetic nanoparticles (MNPs-PSA) as an efficient and magnetically reusable nanocatalyst has been reported for the tetrahydropyranylation/depyranylation of a wide variety of alcohols and phenols by changing the solvent medium. Also, the protection of aldehydes as acylals using Ac2O in the presence of catalytic amount MNPs-PSA in good to high yields at room temperature under solvent-free conditions is described. After completing the reaction, the catalyst was easily separated from the reaction mixture with the assistance of an external magnetic field and reused for several consecutive runs without significant loss of their catalytic efficiency.

Journal

Research on Chemical IntermediatesSpringer Journals

Published: Aug 29, 2015

There are no references for this article.