Support Vector Machine Histogram: New Analysis and Architecture Design Method of Deep Convolutional Neural Network

Support Vector Machine Histogram: New Analysis and Architecture Design Method of Deep... Deep convolutional neural network (DCNN) is a kind of hierarchical neural network models and attracts attention in recent years since it has shown high classification performance. DCNN can acquire the feature representation which is a parameter indicating the feature of the input by learning. However, its internal analysis and the design of the network architecture have many unclear points and it cannot be said that it has been sufficiently elucidated. We propose the novel DCNN analysis method “Support vector machine (SVM) histogram” as a prescription to deal with these problems. This is a method that examines the spatial distribution of DCNN extracted feature representation by using the decision boundary of linear SVM. We show that we can interpret DCNN hierarchical processing using this method. In addition, by using the result of SVM histogram, DCNN architecture design becomes possible. In this study, we designed the architecture of the application to large scale natural image dataset. In the result, we succeeded in showing higher accuracy than the original DCNN. http://www.deepdyve.com/assets/images/DeepDyve-Logo-lg.png Neural Processing Letters Springer Journals

Support Vector Machine Histogram: New Analysis and Architecture Design Method of Deep Convolutional Neural Network

Loading next page...
 
/lp/springer_journal/support-vector-machine-histogram-new-analysis-and-architecture-design-Fv42uks4oy
Publisher
Springer US
Copyright
Copyright © 2017 by Springer Science+Business Media, LLC
Subject
Computer Science; Artificial Intelligence (incl. Robotics); Complex Systems; Computational Intelligence
ISSN
1370-4621
eISSN
1573-773X
D.O.I.
10.1007/s11063-017-9652-0
Publisher site
See Article on Publisher Site

Abstract

Deep convolutional neural network (DCNN) is a kind of hierarchical neural network models and attracts attention in recent years since it has shown high classification performance. DCNN can acquire the feature representation which is a parameter indicating the feature of the input by learning. However, its internal analysis and the design of the network architecture have many unclear points and it cannot be said that it has been sufficiently elucidated. We propose the novel DCNN analysis method “Support vector machine (SVM) histogram” as a prescription to deal with these problems. This is a method that examines the spatial distribution of DCNN extracted feature representation by using the decision boundary of linear SVM. We show that we can interpret DCNN hierarchical processing using this method. In addition, by using the result of SVM histogram, DCNN architecture design becomes possible. In this study, we designed the architecture of the application to large scale natural image dataset. In the result, we succeeded in showing higher accuracy than the original DCNN.

Journal

Neural Processing LettersSpringer Journals

Published: Jul 3, 2017

References

You’re reading a free preview. Subscribe to read the entire article.


DeepDyve is your
personal research library

It’s your single place to instantly
discover and read the research
that matters to you.

Enjoy affordable access to
over 18 million articles from more than
15,000 peer-reviewed journals.

All for just $49/month

Explore the DeepDyve Library

Search

Query the DeepDyve database, plus search all of PubMed and Google Scholar seamlessly

Organize

Save any article or search result from DeepDyve, PubMed, and Google Scholar... all in one place.

Access

Get unlimited, online access to over 18 million full-text articles from more than 15,000 scientific journals.

Your journals are on DeepDyve

Read from thousands of the leading scholarly journals from SpringerNature, Elsevier, Wiley-Blackwell, Oxford University Press and more.

All the latest content is available, no embargo periods.

See the journals in your area

DeepDyve

Freelancer

DeepDyve

Pro

Price

FREE

$49/month
$360/year

Save searches from
Google Scholar,
PubMed

Create lists to
organize your research

Export lists, citations

Read DeepDyve articles

Abstract access only

Unlimited access to over
18 million full-text articles

Print

20 pages / month

PDF Discount

20% off