Get 20M+ Full-Text Papers For Less Than $1.50/day. Start a 14-Day Trial for You or Your Team.

Learn More →

Supersonic boundary-layer response to optically generated freestream disturbances

Supersonic boundary-layer response to optically generated freestream disturbances Controlled, localized disturbances were introduced into the supersonic freestream upstream of a 4:1 elliptic cross-section cone. The response of the initially laminar boundary layer to the laser-generated freestream perturbation was measured above the cone minor axis. The experiment was conducted in the Mach-4 Purdue Quiet-flow Ludwieg tube at a freestream unit Reynolds number of 4.5 million/m. The focused beam from a frequency-doubled Nd:YAG laser was used to generate the disturbance. The perturbation existed in the flowfield as a region of locally heated air, referred to here as the thermal spot. Constant-temperature anemometry was used to characterize the boundary-layer response to the introduction of the thermal spot. The response was largest and most complex near the boundary-layer edge. The duration of the measured boundary-layer response was an order of magnitude greater than the measured duration of the disturbance in the freestream. Within the boundary layer, the mass-flux deviation introduced by the thermal spot was of the same magnitude as the local mean mass flux. The optically generated disturbance is potentially useful as a perturbation source in future boundary-layer receptivity experiments. http://www.deepdyve.com/assets/images/DeepDyve-Logo-lg.png Experiments in Fluids Springer Journals

Supersonic boundary-layer response to optically generated freestream disturbances

Loading next page...
1
 
/lp/springer_journal/supersonic-boundary-layer-response-to-optically-generated-freestream-A03mA806Xf

References (15)

Publisher
Springer Journals
Copyright
Copyright © 2002 by Springer-Verlag Berlin Heidelberg
Subject
Engineering; Engineering Fluid Dynamics; Fluid- and Aerodynamics; Engineering Thermodynamics, Heat and Mass Transfer
ISSN
0723-4864
eISSN
1432-1114
DOI
10.1007/s00348-001-0392-5
Publisher site
See Article on Publisher Site

Abstract

Controlled, localized disturbances were introduced into the supersonic freestream upstream of a 4:1 elliptic cross-section cone. The response of the initially laminar boundary layer to the laser-generated freestream perturbation was measured above the cone minor axis. The experiment was conducted in the Mach-4 Purdue Quiet-flow Ludwieg tube at a freestream unit Reynolds number of 4.5 million/m. The focused beam from a frequency-doubled Nd:YAG laser was used to generate the disturbance. The perturbation existed in the flowfield as a region of locally heated air, referred to here as the thermal spot. Constant-temperature anemometry was used to characterize the boundary-layer response to the introduction of the thermal spot. The response was largest and most complex near the boundary-layer edge. The duration of the measured boundary-layer response was an order of magnitude greater than the measured duration of the disturbance in the freestream. Within the boundary layer, the mass-flux deviation introduced by the thermal spot was of the same magnitude as the local mean mass flux. The optically generated disturbance is potentially useful as a perturbation source in future boundary-layer receptivity experiments.

Journal

Experiments in FluidsSpringer Journals

Published: Aug 1, 2002

There are no references for this article.