Superparamagnetic Iron Oxide Nanoparticles (SPION) Functionalized by Caffeic Acid (CFA)

Superparamagnetic Iron Oxide Nanoparticles (SPION) Functionalized by Caffeic Acid (CFA) In this research, we synthesized a novel caffeic acid-functionalized iron oxide nanoparticles (CFA-functionalized SPION) L929 (mouse fibroblast cell), U87 (glioblastoma brain cancer cell), MCF-7 (breast cancer cell), HeLa (cervix cancer cell), and A549 (human lung cancer cell) cell lines. Thermal decomposition and Stöber methods were used to prepare APTES-capped SPION, respectively. The carboxylated polyethylene glycol (PEG-COOH), folic acid (FA), and caffeic acid (CFA) were attached to the surface of SPION via carboxylic/amine groups. Structural analysis (Rietveld analysis) confirmed the phase purity of the product. The conjugation of organics to the surface of SPION was followed with FT-IR spectroscopy and thermal gravimetric analysis (TGA). SEM analysis presented the spherical morphology of product with 13 ± 3 nm particle size. And also, superparamagnetic property of product was deduced from VSM analysis. Uptake of CFA-functionalized SPION from the cell and release of CFA from CFA-functionalized SPION has been studied by using Prussian blue staining and spectrophotometer, respectively. Also, cell viability and cytotoxicity was tested by MTT and LDH assays. The uptake of CFA-functionalized SPION by HeLa, MCF-7, and U87 was higher than A549 and L929 cells. Also, caffeic acid release from CFA-functionalized SPION increased at an acidic environment (pH 4.4). A newly synthesized CFA-functionalized SPION in all used concentrations decreased cell viability and increased cytotoxicity at 24th and 48th hours. The results showed that the CFA-functionalized SPION is a potential anticancer agent for cancer therapy. http://www.deepdyve.com/assets/images/DeepDyve-Logo-lg.png Journal of Superconductivity and Novel Magnetism Springer Journals

Superparamagnetic Iron Oxide Nanoparticles (SPION) Functionalized by Caffeic Acid (CFA)

Loading next page...
 
/lp/springer_journal/superparamagnetic-iron-oxide-nanoparticles-spion-functionalized-by-klY8vSNAnX
Publisher
Springer US
Copyright
Copyright © 2017 by Springer Science+Business Media New York
Subject
Physics; Strongly Correlated Systems, Superconductivity; Magnetism, Magnetic Materials; Condensed Matter Physics; Characterization and Evaluation of Materials
ISSN
1557-1939
eISSN
1557-1947
D.O.I.
10.1007/s10948-017-4088-3
Publisher site
See Article on Publisher Site

Abstract

In this research, we synthesized a novel caffeic acid-functionalized iron oxide nanoparticles (CFA-functionalized SPION) L929 (mouse fibroblast cell), U87 (glioblastoma brain cancer cell), MCF-7 (breast cancer cell), HeLa (cervix cancer cell), and A549 (human lung cancer cell) cell lines. Thermal decomposition and Stöber methods were used to prepare APTES-capped SPION, respectively. The carboxylated polyethylene glycol (PEG-COOH), folic acid (FA), and caffeic acid (CFA) were attached to the surface of SPION via carboxylic/amine groups. Structural analysis (Rietveld analysis) confirmed the phase purity of the product. The conjugation of organics to the surface of SPION was followed with FT-IR spectroscopy and thermal gravimetric analysis (TGA). SEM analysis presented the spherical morphology of product with 13 ± 3 nm particle size. And also, superparamagnetic property of product was deduced from VSM analysis. Uptake of CFA-functionalized SPION from the cell and release of CFA from CFA-functionalized SPION has been studied by using Prussian blue staining and spectrophotometer, respectively. Also, cell viability and cytotoxicity was tested by MTT and LDH assays. The uptake of CFA-functionalized SPION by HeLa, MCF-7, and U87 was higher than A549 and L929 cells. Also, caffeic acid release from CFA-functionalized SPION increased at an acidic environment (pH 4.4). A newly synthesized CFA-functionalized SPION in all used concentrations decreased cell viability and increased cytotoxicity at 24th and 48th hours. The results showed that the CFA-functionalized SPION is a potential anticancer agent for cancer therapy.

Journal

Journal of Superconductivity and Novel MagnetismSpringer Journals

Published: Apr 8, 2017

References

You’re reading a free preview. Subscribe to read the entire article.


DeepDyve is your
personal research library

It’s your single place to instantly
discover and read the research
that matters to you.

Enjoy affordable access to
over 18 million articles from more than
15,000 peer-reviewed journals.

All for just $49/month

Explore the DeepDyve Library

Search

Query the DeepDyve database, plus search all of PubMed and Google Scholar seamlessly

Organize

Save any article or search result from DeepDyve, PubMed, and Google Scholar... all in one place.

Access

Get unlimited, online access to over 18 million full-text articles from more than 15,000 scientific journals.

Your journals are on DeepDyve

Read from thousands of the leading scholarly journals from SpringerNature, Elsevier, Wiley-Blackwell, Oxford University Press and more.

All the latest content is available, no embargo periods.

See the journals in your area

DeepDyve

Freelancer

DeepDyve

Pro

Price

FREE

$49/month
$360/year

Save searches from
Google Scholar,
PubMed

Create lists to
organize your research

Export lists, citations

Read DeepDyve articles

Abstract access only

Unlimited access to over
18 million full-text articles

Print

20 pages / month

PDF Discount

20% off