Supercritical nitrogen free jet investigated by spontaneous Raman scattering

Supercritical nitrogen free jet investigated by spontaneous Raman scattering The injection of fuel and oxidizer in high pressure rocket combustion chambers is simulated in a model experiment dedicated to investigate the phenomenology of coaxial injection at supercritical pressures. Cryogenic nitrogen is injected in a pressurized reservoir of N2 at ambient temperature at 4 Mpa and 6 Mpa, above the critical pressure for nitrogen of 3.4 Mpa. The radial density distribution of the N2 is determined by spontaneous Raman-scattering, from the measured densities temperature distributions are derived. The radial density and temperature pro les are analyzed as a function of the distance from the injector for x/D = 1 to 30. The influence of density gradients, internal field effects and interference effects on the performance of the Raman technique when applied to turbulent high density flows is discussed. http://www.deepdyve.com/assets/images/DeepDyve-Logo-lg.png Experiments in Fluids Springer Journals

Supercritical nitrogen free jet investigated by spontaneous Raman scattering

Loading next page...
 
/lp/springer_journal/supercritical-nitrogen-free-jet-investigated-by-spontaneous-raman-PrnCfgth53
Publisher
Springer-Verlag
Copyright
Copyright © 1999 by Springer-Verlag Berlin Heidelberg
Subject
Engineering; Engineering Fluid Dynamics; Fluid- and Aerodynamics; Engineering Thermodynamics, Heat and Mass Transfer
ISSN
0723-4864
eISSN
1432-1114
D.O.I.
10.1007/s003480050374
Publisher site
See Article on Publisher Site

Abstract

The injection of fuel and oxidizer in high pressure rocket combustion chambers is simulated in a model experiment dedicated to investigate the phenomenology of coaxial injection at supercritical pressures. Cryogenic nitrogen is injected in a pressurized reservoir of N2 at ambient temperature at 4 Mpa and 6 Mpa, above the critical pressure for nitrogen of 3.4 Mpa. The radial density distribution of the N2 is determined by spontaneous Raman-scattering, from the measured densities temperature distributions are derived. The radial density and temperature pro les are analyzed as a function of the distance from the injector for x/D = 1 to 30. The influence of density gradients, internal field effects and interference effects on the performance of the Raman technique when applied to turbulent high density flows is discussed.

Journal

Experiments in FluidsSpringer Journals

Published: Nov 4, 1999

There are no references for this article.

You’re reading a free preview. Subscribe to read the entire article.


DeepDyve is your
personal research library

It’s your single place to instantly
discover and read the research
that matters to you.

Enjoy affordable access to
over 18 million articles from more than
15,000 peer-reviewed journals.

All for just $49/month

Explore the DeepDyve Library

Search

Query the DeepDyve database, plus search all of PubMed and Google Scholar seamlessly

Organize

Save any article or search result from DeepDyve, PubMed, and Google Scholar... all in one place.

Access

Get unlimited, online access to over 18 million full-text articles from more than 15,000 scientific journals.

Your journals are on DeepDyve

Read from thousands of the leading scholarly journals from SpringerNature, Elsevier, Wiley-Blackwell, Oxford University Press and more.

All the latest content is available, no embargo periods.

See the journals in your area

DeepDyve

Freelancer

DeepDyve

Pro

Price

FREE

$49/month
$360/year

Save searches from
Google Scholar,
PubMed

Create lists to
organize your research

Export lists, citations

Read DeepDyve articles

Abstract access only

Unlimited access to over
18 million full-text articles

Print

20 pages / month

PDF Discount

20% off