Super-high-thickness high-speed wire electrical discharge machining

Super-high-thickness high-speed wire electrical discharge machining High-speed wire electrical discharge machining (WEDM-HS) of materials of super-high thickness (more than 1000 mm) is a challenging problem. First, sufficient energy is required to maintain the inter-electrode normal discharge. Next, there must be adequate inter-electrode dielectric fluid. Third, in order to generate a smooth cut surface, it is necessary to suppress the vibration of the wire electrode to reduce vibration lines on the cutting surface. To better understand these challenges, the energy and the flow of the medium between two electrodes were analyzed, allowing the establishment of a relevant model. The results indicated that for super-high-thickness machining, the pulse energy must be adequate to compensate for the energy consumed in the molybdenum wire and inter-electrode working liquid. In addition, the running speed of the wire electrode should be improved to ensure that there is a sufficiently high flow rate of the dielectric fluid. The servo control mode of the existing machine tools and dielectric fluid were improved and then a process experiment was performed. The experimental results show that the process can be carried out efficiently and stably and the workpiece surface can be cut smoothly using the improved working liquid and servo control mode. http://www.deepdyve.com/assets/images/DeepDyve-Logo-lg.png The International Journal of Advanced Manufacturing Technology Springer Journals

Super-high-thickness high-speed wire electrical discharge machining

Loading next page...
 
/lp/springer_journal/super-high-thickness-high-speed-wire-electrical-discharge-machining-HGJrErCUXU
Publisher
Springer London
Copyright
Copyright © 2017 by Springer-Verlag London Ltd.
Subject
Engineering; Industrial and Production Engineering; Media Management; Mechanical Engineering; Computer-Aided Engineering (CAD, CAE) and Design
ISSN
0268-3768
eISSN
1433-3015
D.O.I.
10.1007/s00170-017-1246-5
Publisher site
See Article on Publisher Site

Abstract

High-speed wire electrical discharge machining (WEDM-HS) of materials of super-high thickness (more than 1000 mm) is a challenging problem. First, sufficient energy is required to maintain the inter-electrode normal discharge. Next, there must be adequate inter-electrode dielectric fluid. Third, in order to generate a smooth cut surface, it is necessary to suppress the vibration of the wire electrode to reduce vibration lines on the cutting surface. To better understand these challenges, the energy and the flow of the medium between two electrodes were analyzed, allowing the establishment of a relevant model. The results indicated that for super-high-thickness machining, the pulse energy must be adequate to compensate for the energy consumed in the molybdenum wire and inter-electrode working liquid. In addition, the running speed of the wire electrode should be improved to ensure that there is a sufficiently high flow rate of the dielectric fluid. The servo control mode of the existing machine tools and dielectric fluid were improved and then a process experiment was performed. The experimental results show that the process can be carried out efficiently and stably and the workpiece surface can be cut smoothly using the improved working liquid and servo control mode.

Journal

The International Journal of Advanced Manufacturing TechnologySpringer Journals

Published: Nov 16, 2017

References

You’re reading a free preview. Subscribe to read the entire article.


DeepDyve is your
personal research library

It’s your single place to instantly
discover and read the research
that matters to you.

Enjoy affordable access to
over 18 million articles from more than
15,000 peer-reviewed journals.

All for just $49/month

Explore the DeepDyve Library

Search

Query the DeepDyve database, plus search all of PubMed and Google Scholar seamlessly

Organize

Save any article or search result from DeepDyve, PubMed, and Google Scholar... all in one place.

Access

Get unlimited, online access to over 18 million full-text articles from more than 15,000 scientific journals.

Your journals are on DeepDyve

Read from thousands of the leading scholarly journals from SpringerNature, Elsevier, Wiley-Blackwell, Oxford University Press and more.

All the latest content is available, no embargo periods.

See the journals in your area

DeepDyve

Freelancer

DeepDyve

Pro

Price

FREE

$49/month
$360/year

Save searches from
Google Scholar,
PubMed

Create lists to
organize your research

Export lists, citations

Read DeepDyve articles

Abstract access only

Unlimited access to over
18 million full-text articles

Print

20 pages / month

PDF Discount

20% off