Sunflower yield related to multi-temporal aerial photography, land elevation and weed infestation

Sunflower yield related to multi-temporal aerial photography, land elevation and weed infestation This study investigated the relationships between sunflower yield and crop multi-temporal spectral data obtained from aerial photographs, land elevation and the presence of Ridolfia segetum weed. Conventional-color and color-infrared airborne photographs were taken at three dates corresponding to the vegetative, flowering and senescent crop stages. Descriptive and statistical methods were applied to every spatial variable to extract the influence of each component on the sunflower yield variability. Principal components and regression models were used to explore the potential of the multi-spectral variables from the airborne photographs to predict the sunflower yield map at every studied date. Higher sunflower yield was found in areas with lower elevation. These areas were also predominantly free of weed infestation. The Normalized Difference Vegetation Index derived from the image taken at crop vegetative stage was strongly correlated to crop yield. A very poor correlation was detected between the sunflower yield and all the multi-spectral variables studied in the flowering and the senescence crop stages. A map with three zones of yield was predicted with 67.81% of overall accuracy using the stepwise-model equation formed by the green and red bands and the two vegetation indices obtained at vegetative crop stage. The selected multi-spectral data taken in early season (mid-May), plus the additional knowledge of weed presence and field elevation, could provide valuable spatial information to estimate the yield crop variability in the studied fields. This estimation might aid in the development of adequate spatially variable management strategies in the months prior to the sunflower harvest. http://www.deepdyve.com/assets/images/DeepDyve-Logo-lg.png Precision Agriculture Springer Journals

Sunflower yield related to multi-temporal aerial photography, land elevation and weed infestation

Loading next page...
 
/lp/springer_journal/sunflower-yield-related-to-multi-temporal-aerial-photography-land-f72wqUng7n
Publisher
Springer Journals
Copyright
Copyright © 2009 by Springer Science+Business Media, LLC
Subject
Life Sciences; Agriculture; Soil Science & Conservation; Remote Sensing/Photogrammetry; Statistics for Engineering, Physics, Computer Science, Chemistry and Earth Sciences; Atmospheric Sciences
ISSN
1385-2256
eISSN
1573-1618
D.O.I.
10.1007/s11119-009-9149-6
Publisher site
See Article on Publisher Site

Abstract

This study investigated the relationships between sunflower yield and crop multi-temporal spectral data obtained from aerial photographs, land elevation and the presence of Ridolfia segetum weed. Conventional-color and color-infrared airborne photographs were taken at three dates corresponding to the vegetative, flowering and senescent crop stages. Descriptive and statistical methods were applied to every spatial variable to extract the influence of each component on the sunflower yield variability. Principal components and regression models were used to explore the potential of the multi-spectral variables from the airborne photographs to predict the sunflower yield map at every studied date. Higher sunflower yield was found in areas with lower elevation. These areas were also predominantly free of weed infestation. The Normalized Difference Vegetation Index derived from the image taken at crop vegetative stage was strongly correlated to crop yield. A very poor correlation was detected between the sunflower yield and all the multi-spectral variables studied in the flowering and the senescence crop stages. A map with three zones of yield was predicted with 67.81% of overall accuracy using the stepwise-model equation formed by the green and red bands and the two vegetation indices obtained at vegetative crop stage. The selected multi-spectral data taken in early season (mid-May), plus the additional knowledge of weed presence and field elevation, could provide valuable spatial information to estimate the yield crop variability in the studied fields. This estimation might aid in the development of adequate spatially variable management strategies in the months prior to the sunflower harvest.

Journal

Precision AgricultureSpringer Journals

Published: Nov 24, 2009

References

You’re reading a free preview. Subscribe to read the entire article.


DeepDyve is your
personal research library

It’s your single place to instantly
discover and read the research
that matters to you.

Enjoy affordable access to
over 18 million articles from more than
15,000 peer-reviewed journals.

All for just $49/month

Explore the DeepDyve Library

Search

Query the DeepDyve database, plus search all of PubMed and Google Scholar seamlessly

Organize

Save any article or search result from DeepDyve, PubMed, and Google Scholar... all in one place.

Access

Get unlimited, online access to over 18 million full-text articles from more than 15,000 scientific journals.

Your journals are on DeepDyve

Read from thousands of the leading scholarly journals from SpringerNature, Elsevier, Wiley-Blackwell, Oxford University Press and more.

All the latest content is available, no embargo periods.

See the journals in your area

DeepDyve

Freelancer

DeepDyve

Pro

Price

FREE

$49/month
$360/year

Save searches from
Google Scholar,
PubMed

Create lists to
organize your research

Export lists, citations

Read DeepDyve articles

Abstract access only

Unlimited access to over
18 million full-text articles

Print

20 pages / month

PDF Discount

20% off