Sulfated SO4 2−/WO3 as an efficient and eco-friendly catalyst for solvent-free liquid phase nitration of toluene with NO2

Sulfated SO4 2−/WO3 as an efficient and eco-friendly catalyst for solvent-free liquid phase... With the increase in environmental awareness, developing a highly efficient and environmentally benign nitration process has very important academic and applied industrial values in the synthesis of nitro-compounds. Towards this goal, we have developed an efficient and environmentally friendly approach for solvent-free liquid phase nitration of toluene by employing NO2 as a nitrating agent and sulfated SO4 2−/WO3 as a catalyst replacing traditional nitric acid–sulfuric acid under mild conditions. The results indicate that SO4 2−/WO3 as an effective and eco-friendly catalyst exhibits excellent catalytic activity and reusability for the nitration of toluene with NO2. In addition, the possible pathway for liquid phase nitration of toluene with NO2 over sulfated SO4 2−/WO3 catalyst was suggested. The present method makes this nitration process safe and environmentally friendly, and has the potential to enable a sustainable production of nitro-compounds from the liquid phase nitration of aromatic hydrocarbon with NO2 in industrial applications. http://www.deepdyve.com/assets/images/DeepDyve-Logo-lg.png Research on Chemical Intermediates Springer Journals

Sulfated SO4 2−/WO3 as an efficient and eco-friendly catalyst for solvent-free liquid phase nitration of toluene with NO2

Loading next page...
 
/lp/springer_journal/sulfated-so4-2-wo3-as-an-efficient-and-eco-friendly-catalyst-for-RDye50u4Qb
Publisher
Springer Netherlands
Copyright
Copyright © 2017 by Springer Science+Business Media Dordrecht
Subject
Chemistry; Catalysis; Physical Chemistry; Inorganic Chemistry
ISSN
0922-6168
eISSN
1568-5675
D.O.I.
10.1007/s11164-016-2856-5
Publisher site
See Article on Publisher Site

Abstract

With the increase in environmental awareness, developing a highly efficient and environmentally benign nitration process has very important academic and applied industrial values in the synthesis of nitro-compounds. Towards this goal, we have developed an efficient and environmentally friendly approach for solvent-free liquid phase nitration of toluene by employing NO2 as a nitrating agent and sulfated SO4 2−/WO3 as a catalyst replacing traditional nitric acid–sulfuric acid under mild conditions. The results indicate that SO4 2−/WO3 as an effective and eco-friendly catalyst exhibits excellent catalytic activity and reusability for the nitration of toluene with NO2. In addition, the possible pathway for liquid phase nitration of toluene with NO2 over sulfated SO4 2−/WO3 catalyst was suggested. The present method makes this nitration process safe and environmentally friendly, and has the potential to enable a sustainable production of nitro-compounds from the liquid phase nitration of aromatic hydrocarbon with NO2 in industrial applications.

Journal

Research on Chemical IntermediatesSpringer Journals

Published: Jan 9, 2017

References

You’re reading a free preview. Subscribe to read the entire article.


DeepDyve is your
personal research library

It’s your single place to instantly
discover and read the research
that matters to you.

Enjoy affordable access to
over 12 million articles from more than
10,000 peer-reviewed journals.

All for just $49/month

Explore the DeepDyve Library

Unlimited reading

Read as many articles as you need. Full articles with original layout, charts and figures. Read online, from anywhere.

Stay up to date

Keep up with your field with Personalized Recommendations and Follow Journals to get automatic updates.

Organize your research

It’s easy to organize your research with our built-in tools.

Your journals are on DeepDyve

Read from thousands of the leading scholarly journals from SpringerNature, Elsevier, Wiley-Blackwell, Oxford University Press and more.

All the latest content is available, no embargo periods.

See the journals in your area

DeepDyve Freelancer

DeepDyve Pro

Price
FREE
$49/month

$360/year
Save searches from
Google Scholar,
PubMed
Create lists to
organize your research
Export lists, citations
Read DeepDyve articles
Abstract access only
Unlimited access to over
18 million full-text articles
Print
20 pages/month
PDF Discount
20% off