Sulfate Ion Effect on Stability and Regulatory Properties of PEP Carboxylase from the C4Plant Cynodon dactylon

Sulfate Ion Effect on Stability and Regulatory Properties of PEP Carboxylase from the C4Plant... When Tris–SO4was used as an extraction buffer for phosphoenolpyruvate carboxylase (PEPC) from leaves of the C4plant Cynodon dactylon(L.) Pers., a higher extractable activity was obtained as compared to Tris–HCl, especially at low phosphoenolpyruvate concentrations and an assay pH of 7.2. The Tris–SO4-extracted PEPC activity was stable under dilution and remained unchanged for at least 24 h at 22°C. This enzyme was less sensitive to both activation by glucose-6-phosphate and inhibition by L-malate. The effects of Tris–SO4could be attributed to its preferential exclusion from the enzymic protein domain and, therefore, to a shifting of this oligomeric enzyme to a more aggregable form that is more stable and active. http://www.deepdyve.com/assets/images/DeepDyve-Logo-lg.png Russian Journal of Plant Physiology Springer Journals

Sulfate Ion Effect on Stability and Regulatory Properties of PEP Carboxylase from the C4Plant Cynodon dactylon

Loading next page...
 
/lp/springer_journal/sulfate-ion-effect-on-stability-and-regulatory-properties-of-pep-zsq8VxnEtj
Publisher
Springer Journals
Copyright
Copyright © 2001 by MAIK “Nauka/Interperiodica”
Subject
Life Sciences; Plant Sciences
ISSN
1021-4437
eISSN
1608-3407
D.O.I.
10.1023/A:1009043931968
Publisher site
See Article on Publisher Site

Abstract

When Tris–SO4was used as an extraction buffer for phosphoenolpyruvate carboxylase (PEPC) from leaves of the C4plant Cynodon dactylon(L.) Pers., a higher extractable activity was obtained as compared to Tris–HCl, especially at low phosphoenolpyruvate concentrations and an assay pH of 7.2. The Tris–SO4-extracted PEPC activity was stable under dilution and remained unchanged for at least 24 h at 22°C. This enzyme was less sensitive to both activation by glucose-6-phosphate and inhibition by L-malate. The effects of Tris–SO4could be attributed to its preferential exclusion from the enzymic protein domain and, therefore, to a shifting of this oligomeric enzyme to a more aggregable form that is more stable and active.

Journal

Russian Journal of Plant PhysiologySpringer Journals

Published: Oct 10, 2004

References

You’re reading a free preview. Subscribe to read the entire article.


DeepDyve is your
personal research library

It’s your single place to instantly
discover and read the research
that matters to you.

Enjoy affordable access to
over 18 million articles from more than
15,000 peer-reviewed journals.

All for just $49/month

Explore the DeepDyve Library

Search

Query the DeepDyve database, plus search all of PubMed and Google Scholar seamlessly

Organize

Save any article or search result from DeepDyve, PubMed, and Google Scholar... all in one place.

Access

Get unlimited, online access to over 18 million full-text articles from more than 15,000 scientific journals.

Your journals are on DeepDyve

Read from thousands of the leading scholarly journals from SpringerNature, Elsevier, Wiley-Blackwell, Oxford University Press and more.

All the latest content is available, no embargo periods.

See the journals in your area

DeepDyve

Freelancer

DeepDyve

Pro

Price

FREE

$49/month
$360/year

Save searches from
Google Scholar,
PubMed

Create lists to
organize your research

Export lists, citations

Read DeepDyve articles

Abstract access only

Unlimited access to over
18 million full-text articles

Print

20 pages / month

PDF Discount

20% off