Suitability of a laser rangefinder to characterize winter wheat

Suitability of a laser rangefinder to characterize winter wheat In recent years, laser rangefinder sensors have been introduced to the practice and research of agricultural engineering. In research, laser rangefinders have been investigated in horticulture and agriculture. For vehicle-based determination of crop biomass, commercially available laser rangefinders have been analysed and tested to measure aboveground biomass in oilseed rape, winter rye, winter wheat, oats and grassland. Resulting from limited measuring range and fixed beam types, the laser rangefinder models that were investigated only partially met the specific demands for agricultural field and crop conditions. Therefore, a new laser rangefinder scanner (ibeo-ALASCA XT) was chosen. This sensor was specifically developed for driver assistance and autonomous guiding of road vehicles. The scanner was tested in 2008 focusing on the measurement of crop stand parameters in winter wheat under field conditions. The sensor achieved good results with reproducible measurements. Measuring from a stationary vehicle, the standard deviation for the measurements of crop height to characterise the crop stand was less than 3 mm in low, medium, and high biomass areas. The ground speed of the vehicle, ranging from 6 to 24 km h−1, did not significantly influence the readings. For measurements in front of tractors and self-propelled machines (field sprayers, combines and forage harvesters), the sensor has to scan the crop stands at different inclination angles. It was shown that the inclination angle of the laser beam, which varied from 10° to 80°, significantly influenced the readings. Higher inclination angles resulted in apparent increased heights of the crop stand. For the functional relationship between reflection height levels (95th, 75th, 50th and 25th percentiles, and mean values) and crop biomass density, the coefficient of determination (R2) was greater than 0.9. http://www.deepdyve.com/assets/images/DeepDyve-Logo-lg.png Precision Agriculture Springer Journals

Suitability of a laser rangefinder to characterize winter wheat

Loading next page...
 
/lp/springer_journal/suitability-of-a-laser-rangefinder-to-characterize-winter-wheat-UPhytgX0HS
Publisher
Springer Journals
Copyright
Copyright © 2010 by Springer Science+Business Media, LLC
Subject
Life Sciences; Agriculture; Soil Science & Conservation; Remote Sensing/Photogrammetry; Statistics for Engineering, Physics, Computer Science, Chemistry and Earth Sciences; Atmospheric Sciences
ISSN
1385-2256
eISSN
1573-1618
D.O.I.
10.1007/s11119-010-9191-4
Publisher site
See Article on Publisher Site

Abstract

In recent years, laser rangefinder sensors have been introduced to the practice and research of agricultural engineering. In research, laser rangefinders have been investigated in horticulture and agriculture. For vehicle-based determination of crop biomass, commercially available laser rangefinders have been analysed and tested to measure aboveground biomass in oilseed rape, winter rye, winter wheat, oats and grassland. Resulting from limited measuring range and fixed beam types, the laser rangefinder models that were investigated only partially met the specific demands for agricultural field and crop conditions. Therefore, a new laser rangefinder scanner (ibeo-ALASCA XT) was chosen. This sensor was specifically developed for driver assistance and autonomous guiding of road vehicles. The scanner was tested in 2008 focusing on the measurement of crop stand parameters in winter wheat under field conditions. The sensor achieved good results with reproducible measurements. Measuring from a stationary vehicle, the standard deviation for the measurements of crop height to characterise the crop stand was less than 3 mm in low, medium, and high biomass areas. The ground speed of the vehicle, ranging from 6 to 24 km h−1, did not significantly influence the readings. For measurements in front of tractors and self-propelled machines (field sprayers, combines and forage harvesters), the sensor has to scan the crop stands at different inclination angles. It was shown that the inclination angle of the laser beam, which varied from 10° to 80°, significantly influenced the readings. Higher inclination angles resulted in apparent increased heights of the crop stand. For the functional relationship between reflection height levels (95th, 75th, 50th and 25th percentiles, and mean values) and crop biomass density, the coefficient of determination (R2) was greater than 0.9.

Journal

Precision AgricultureSpringer Journals

Published: Sep 17, 2010

References

You’re reading a free preview. Subscribe to read the entire article.


DeepDyve is your
personal research library

It’s your single place to instantly
discover and read the research
that matters to you.

Enjoy affordable access to
over 18 million articles from more than
15,000 peer-reviewed journals.

All for just $49/month

Explore the DeepDyve Library

Search

Query the DeepDyve database, plus search all of PubMed and Google Scholar seamlessly

Organize

Save any article or search result from DeepDyve, PubMed, and Google Scholar... all in one place.

Access

Get unlimited, online access to over 18 million full-text articles from more than 15,000 scientific journals.

Your journals are on DeepDyve

Read from thousands of the leading scholarly journals from SpringerNature, Elsevier, Wiley-Blackwell, Oxford University Press and more.

All the latest content is available, no embargo periods.

See the journals in your area

DeepDyve

Freelancer

DeepDyve

Pro

Price

FREE

$49/month
$360/year

Save searches from
Google Scholar,
PubMed

Create lists to
organize your research

Export lists, citations

Read DeepDyve articles

Abstract access only

Unlimited access to over
18 million full-text articles

Print

20 pages / month

PDF Discount

20% off