Suitability of a laser rangefinder to characterize winter wheat

Suitability of a laser rangefinder to characterize winter wheat In recent years, laser rangefinder sensors have been introduced to the practice and research of agricultural engineering. In research, laser rangefinders have been investigated in horticulture and agriculture. For vehicle-based determination of crop biomass, commercially available laser rangefinders have been analysed and tested to measure aboveground biomass in oilseed rape, winter rye, winter wheat, oats and grassland. Resulting from limited measuring range and fixed beam types, the laser rangefinder models that were investigated only partially met the specific demands for agricultural field and crop conditions. Therefore, a new laser rangefinder scanner (ibeo-ALASCA XT) was chosen. This sensor was specifically developed for driver assistance and autonomous guiding of road vehicles. The scanner was tested in 2008 focusing on the measurement of crop stand parameters in winter wheat under field conditions. The sensor achieved good results with reproducible measurements. Measuring from a stationary vehicle, the standard deviation for the measurements of crop height to characterise the crop stand was less than 3 mm in low, medium, and high biomass areas. The ground speed of the vehicle, ranging from 6 to 24 km h−1, did not significantly influence the readings. For measurements in front of tractors and self-propelled machines (field sprayers, combines and forage harvesters), the sensor has to scan the crop stands at different inclination angles. It was shown that the inclination angle of the laser beam, which varied from 10° to 80°, significantly influenced the readings. Higher inclination angles resulted in apparent increased heights of the crop stand. For the functional relationship between reflection height levels (95th, 75th, 50th and 25th percentiles, and mean values) and crop biomass density, the coefficient of determination (R2) was greater than 0.9. Precision Agriculture Springer Journals

Suitability of a laser rangefinder to characterize winter wheat

Loading next page...
Springer US
Copyright © 2010 by Springer Science+Business Media, LLC
Life Sciences; Agriculture; Soil Science & Conservation; Remote Sensing/Photogrammetry; Statistics for Engineering, Physics, Computer Science, Chemistry and Earth Sciences; Atmospheric Sciences
Publisher site
See Article on Publisher Site


You’re reading a free preview. Subscribe to read the entire article.

DeepDyve is your
personal research library

It’s your single place to instantly
discover and read the research
that matters to you.

Enjoy affordable access to
over 12 million articles from more than
10,000 peer-reviewed journals.

All for just $49/month

Explore the DeepDyve Library

Unlimited reading

Read as many articles as you need. Full articles with original layout, charts and figures. Read online, from anywhere.

Stay up to date

Keep up with your field with Personalized Recommendations and Follow Journals to get automatic updates.

Organize your research

It’s easy to organize your research with our built-in tools.

Your journals are on DeepDyve

Read from thousands of the leading scholarly journals from SpringerNature, Elsevier, Wiley-Blackwell, Oxford University Press and more.

All the latest content is available, no embargo periods.

See the journals in your area

Monthly Plan

  • Read unlimited articles
  • Personalized recommendations
  • No expiration
  • Print 20 pages per month
  • 20% off on PDF purchases
  • Organize your research
  • Get updates on your journals and topic searches


Start Free Trial

14-day Free Trial

Best Deal — 39% off

Annual Plan

  • All the features of the Professional Plan, but for 39% off!
  • Billed annually
  • No expiration
  • For the normal price of 10 articles elsewhere, you get one full year of unlimited access to articles.



billed annually
Start Free Trial

14-day Free Trial