Sugar levels modulate sorbitol dehydrogenase expression in maize

Sugar levels modulate sorbitol dehydrogenase expression in maize The first step in sucrose use by maize kernels produces fructose, regardless of whether the initial reaction is catalyzed by an invertase or the reversible sucrose synthase. This fructose can enter subsequent metabolism via hexokinase, or in maize kernels, by a sorbitol dehydrogenase that reversibly converts fructose + NADH to sorbitol + NAD. High levels of SDH activity suggest that kernels synthesize considerable amounts of sorbitol, but the molecular mechanism and functional role for this process have remained equivocal. To gain insights on the role of sorbitol synthesis in maize endosperm we cloned and characterized the transcriptional control of the maize sorbitol dehydrogenase (Sdh1) gene. Data indicated that Sdh1 was essentially kernel- and endosperm-specific, with maximal expression at both the mRNA and enzyme activity levels during early kernel development. Expression was elevated in high-sugar mutants (sugary1, shrunken2), also by sugar injections, and was more pronounced when transfected tissues were incubated at low oxygen concentrations. Control of Sdh1 expression in our transient assays was largely dependent on the first intron of Sdh1. We speculate that SDH activity may represent an adaptation to the high-sugar/low-oxygen environment of the endosperm. Under these conditions, the NADH-dependent reduction of fructose to sorbitol would regenerate NAD[+], thus contributing to the maintenance of the redox and energy status of the cell. http://www.deepdyve.com/assets/images/DeepDyve-Logo-lg.png Plant Molecular Biology Springer Journals

Sugar levels modulate sorbitol dehydrogenase expression in maize

Loading next page...
 
/lp/springer_journal/sugar-levels-modulate-sorbitol-dehydrogenase-expression-in-maize-KGyIpeWYA0
Publisher
Springer Journals
Copyright
Copyright © 2008 by Springer Science+Business Media B.V.
Subject
Life Sciences; Plant Pathology; Biochemistry, general; Plant Sciences
ISSN
0167-4412
eISSN
1573-5028
D.O.I.
10.1007/s11103-008-9362-0
Publisher site
See Article on Publisher Site

Abstract

The first step in sucrose use by maize kernels produces fructose, regardless of whether the initial reaction is catalyzed by an invertase or the reversible sucrose synthase. This fructose can enter subsequent metabolism via hexokinase, or in maize kernels, by a sorbitol dehydrogenase that reversibly converts fructose + NADH to sorbitol + NAD. High levels of SDH activity suggest that kernels synthesize considerable amounts of sorbitol, but the molecular mechanism and functional role for this process have remained equivocal. To gain insights on the role of sorbitol synthesis in maize endosperm we cloned and characterized the transcriptional control of the maize sorbitol dehydrogenase (Sdh1) gene. Data indicated that Sdh1 was essentially kernel- and endosperm-specific, with maximal expression at both the mRNA and enzyme activity levels during early kernel development. Expression was elevated in high-sugar mutants (sugary1, shrunken2), also by sugar injections, and was more pronounced when transfected tissues were incubated at low oxygen concentrations. Control of Sdh1 expression in our transient assays was largely dependent on the first intron of Sdh1. We speculate that SDH activity may represent an adaptation to the high-sugar/low-oxygen environment of the endosperm. Under these conditions, the NADH-dependent reduction of fructose to sorbitol would regenerate NAD[+], thus contributing to the maintenance of the redox and energy status of the cell.

Journal

Plant Molecular BiologySpringer Journals

Published: Jun 20, 2008

References

You’re reading a free preview. Subscribe to read the entire article.


DeepDyve is your
personal research library

It’s your single place to instantly
discover and read the research
that matters to you.

Enjoy affordable access to
over 18 million articles from more than
15,000 peer-reviewed journals.

All for just $49/month

Explore the DeepDyve Library

Search

Query the DeepDyve database, plus search all of PubMed and Google Scholar seamlessly

Organize

Save any article or search result from DeepDyve, PubMed, and Google Scholar... all in one place.

Access

Get unlimited, online access to over 18 million full-text articles from more than 15,000 scientific journals.

Your journals are on DeepDyve

Read from thousands of the leading scholarly journals from SpringerNature, Elsevier, Wiley-Blackwell, Oxford University Press and more.

All the latest content is available, no embargo periods.

See the journals in your area

DeepDyve

Freelancer

DeepDyve

Pro

Price

FREE

$49/month
$360/year

Save searches from
Google Scholar,
PubMed

Create lists to
organize your research

Export lists, citations

Read DeepDyve articles

Abstract access only

Unlimited access to over
18 million full-text articles

Print

20 pages / month

PDF Discount

20% off