Sufficient Conditions for Monotonicity of the Undetected Error Probability for Large Channel Error Probabilities

Sufficient Conditions for Monotonicity of the Undetected Error Probability for Large Channel... The performance of a linear error-detecting code in a symmetric memoryless channel is characterized by its probability of undetected error, which is a function of the channel symbol error probability, involving basic parameters of a code and its weight distribution. However, the code weight distribution is known for relatively few codes since its computation is an NP-hard problem. It should therefore be useful to have criteria for properness and goodness in error detection that do not involve the code weight distribution. In this work we give two such criteria. We show that a binary linear code C of length n and its dual code C ⊥ of minimum code distance d ⊥ are proper for error detection whenever d ⊥ ≥ ⌊n/2⌋ + 1, and that C is proper in the interval [(n + 1 − 2d ⊥)/(n − d ⊥); 1/2] whenever ⌈n/3⌉ + 1 ≤ d ⊥ ≤ ⌊n/2⌋. We also provide examples, mostly of Griesmer codes and their duals, that satisfy the above conditions. http://www.deepdyve.com/assets/images/DeepDyve-Logo-lg.png Problems of Information Transmission Springer Journals

Sufficient Conditions for Monotonicity of the Undetected Error Probability for Large Channel Error Probabilities

Loading next page...
 
/lp/springer_journal/sufficient-conditions-for-monotonicity-of-the-undetected-error-TnCUYp31RE
Publisher
Nauka/Interperiodica
Copyright
Copyright © 2005 by MAIK "Nauka/Interperiodica"
Subject
Engineering; Communications Engineering, Networks; Electrical Engineering; Information Storage and Retrieval; Systems Theory, Control
ISSN
0032-9460
eISSN
1608-3253
D.O.I.
10.1007/s11122-005-0023-5
Publisher site
See Article on Publisher Site

Abstract

The performance of a linear error-detecting code in a symmetric memoryless channel is characterized by its probability of undetected error, which is a function of the channel symbol error probability, involving basic parameters of a code and its weight distribution. However, the code weight distribution is known for relatively few codes since its computation is an NP-hard problem. It should therefore be useful to have criteria for properness and goodness in error detection that do not involve the code weight distribution. In this work we give two such criteria. We show that a binary linear code C of length n and its dual code C ⊥ of minimum code distance d ⊥ are proper for error detection whenever d ⊥ ≥ ⌊n/2⌋ + 1, and that C is proper in the interval [(n + 1 − 2d ⊥)/(n − d ⊥); 1/2] whenever ⌈n/3⌉ + 1 ≤ d ⊥ ≤ ⌊n/2⌋. We also provide examples, mostly of Griesmer codes and their duals, that satisfy the above conditions.

Journal

Problems of Information TransmissionSpringer Journals

Published: Oct 17, 2005

References

You’re reading a free preview. Subscribe to read the entire article.


DeepDyve is your
personal research library

It’s your single place to instantly
discover and read the research
that matters to you.

Enjoy affordable access to
over 12 million articles from more than
10,000 peer-reviewed journals.

All for just $49/month

Explore the DeepDyve Library

Unlimited reading

Read as many articles as you need. Full articles with original layout, charts and figures. Read online, from anywhere.

Stay up to date

Keep up with your field with Personalized Recommendations and Follow Journals to get automatic updates.

Organize your research

It’s easy to organize your research with our built-in tools.

Your journals are on DeepDyve

Read from thousands of the leading scholarly journals from SpringerNature, Elsevier, Wiley-Blackwell, Oxford University Press and more.

All the latest content is available, no embargo periods.

See the journals in your area

DeepDyve Freelancer

DeepDyve Pro

Price
FREE
$49/month

$360/year
Save searches from
Google Scholar,
PubMed
Create lists to
organize your research
Export lists, citations
Read DeepDyve articles
Abstract access only
Unlimited access to over
18 million full-text articles
Print
20 pages/month
PDF Discount
20% off