Substrate specificity of acyl-lipid Δ9-desaturase from Prochlorothrix hollandica cyanobacterium producing myristoleic acid

Substrate specificity of acyl-lipid Δ9-desaturase from Prochlorothrix hollandica cyanobacterium... Chlorophyll b-containing cyanobacterium Prochlorothrix hollandica is characterized by a high content of esterified fatty acids (FA) with 14 and 16 carbon atoms in the membrane lipids. Depending on the conditions of cultivation, the relative amount of myristic (C14:0) and myristoleic (C14:1) acids can reach 35%, and palmitic (С16:0) and palmitoleic (С16:1) acids can reach 60% of the sum of all fatty acids in cells. Monounsaturated FAs are represented by C14:1, and C16:1 with an olefinic bond presumably located in the Δ9 position. We cloned the gene of acyl-lipid Δ9-desaturase, desC1, from Prochlorothrix hollandica and characterized its specificity to the length of the substrate using the heterologous expression in Escherichia coli cells adding C14:0 or stearic (C18:0) acids as exogenous substrates. The results show that DesC1 Δ9 desaturase generates olefinic bonds in the FAs with a length of 14 to 18 carbon atoms with an approximately equal efficiency. This indicates that the length of the FA chain in P. hollandica is determined by the activity of the FA synthase, and the chain is desaturated at the Δ9 position nonspecifically relatively to its length. http://www.deepdyve.com/assets/images/DeepDyve-Logo-lg.png Russian Journal of Plant Physiology Springer Journals

Substrate specificity of acyl-lipid Δ9-desaturase from Prochlorothrix hollandica cyanobacterium producing myristoleic acid

Loading next page...
 
/lp/springer_journal/substrate-specificity-of-acyl-lipid-9-desaturase-from-prochlorothrix-IRBw57hNvC
Publisher
Springer Journals
Copyright
Copyright © 2017 by Pleiades Publishing, Ltd.
Subject
Life Sciences; Plant Physiology; Plant Sciences
ISSN
1021-4437
eISSN
1608-3407
D.O.I.
10.1134/S1021443717040148
Publisher site
See Article on Publisher Site

Abstract

Chlorophyll b-containing cyanobacterium Prochlorothrix hollandica is characterized by a high content of esterified fatty acids (FA) with 14 and 16 carbon atoms in the membrane lipids. Depending on the conditions of cultivation, the relative amount of myristic (C14:0) and myristoleic (C14:1) acids can reach 35%, and palmitic (С16:0) and palmitoleic (С16:1) acids can reach 60% of the sum of all fatty acids in cells. Monounsaturated FAs are represented by C14:1, and C16:1 with an olefinic bond presumably located in the Δ9 position. We cloned the gene of acyl-lipid Δ9-desaturase, desC1, from Prochlorothrix hollandica and characterized its specificity to the length of the substrate using the heterologous expression in Escherichia coli cells adding C14:0 or stearic (C18:0) acids as exogenous substrates. The results show that DesC1 Δ9 desaturase generates olefinic bonds in the FAs with a length of 14 to 18 carbon atoms with an approximately equal efficiency. This indicates that the length of the FA chain in P. hollandica is determined by the activity of the FA synthase, and the chain is desaturated at the Δ9 position nonspecifically relatively to its length.

Journal

Russian Journal of Plant PhysiologySpringer Journals

Published: Jun 24, 2017

References

You’re reading a free preview. Subscribe to read the entire article.


DeepDyve is your
personal research library

It’s your single place to instantly
discover and read the research
that matters to you.

Enjoy affordable access to
over 18 million articles from more than
15,000 peer-reviewed journals.

All for just $49/month

Explore the DeepDyve Library

Search

Query the DeepDyve database, plus search all of PubMed and Google Scholar seamlessly

Organize

Save any article or search result from DeepDyve, PubMed, and Google Scholar... all in one place.

Access

Get unlimited, online access to over 18 million full-text articles from more than 15,000 scientific journals.

Your journals are on DeepDyve

Read from thousands of the leading scholarly journals from SpringerNature, Elsevier, Wiley-Blackwell, Oxford University Press and more.

All the latest content is available, no embargo periods.

See the journals in your area

DeepDyve

Freelancer

DeepDyve

Pro

Price

FREE

$49/month
$360/year

Save searches from
Google Scholar,
PubMed

Create lists to
organize your research

Export lists, citations

Read DeepDyve articles

Abstract access only

Unlimited access to over
18 million full-text articles

Print

20 pages / month

PDF Discount

20% off