Substitution of Ala-251 of the D1 reaction centre polypeptide with a charged residue results in impaired function of photosystem II

Substitution of Ala-251 of the D1 reaction centre polypeptide with a charged residue results in... Ala-251 in the membrane-parallel helix in the D-E loop of the D1 polypeptide close to the QB pocket of photosystem II (PS II), was mutated to aspartate (D), lysine (K), leucine (L) or serine (S) in Synechocystis 6803. O2 evolution rates (H2O→DCBQ; 2,6-dichloro-p-benzoquinone) of A251D, A251L and A251S were lower, being 38, 16, 62 and 70%, respectively, of that of the control, and there was an even more drastic impairment of O2 evolution when measured from H2O to DMBQ (2,5-dimethyl-p-benzoquinone), demonstrating modifications in the QB pocket. However, in all other mutants but A251K, the QB function could sustain O2 evolution at a level high enough to support photosynthetic growth. The mutant A251S, carrying a substitution of alanine for a chemically quite similar residue serine, was less severely affected. Substitution by a positively charged residue drastically delayed chlorophyll a fluorescence relaxation in the non-photosynthetic strain A251K, implying strong impairment of QA-to-QB electron transfer. Delay of fluorescence relaxation was clear in A251D as well, carrying a substitution of alanine for a negatively charged residue. The effects of the substitutions of A251 demonstrate the importance of this residue of the D1 polypeptide in the conformation of the acceptor side of PS II and, accordingly, the effect on the acceptor-side function of PS II was very clear. Nevertheless, the tolerance of PS II activity to high-light-induced photoinhibition in vivo and the subsequent D1 degradation were not much impaired in any of the photosynthetic mutant strains as compared to the control. http://www.deepdyve.com/assets/images/DeepDyve-Logo-lg.png Plant Molecular Biology Springer Journals

Substitution of Ala-251 of the D1 reaction centre polypeptide with a charged residue results in impaired function of photosystem II

Loading next page...
 
/lp/springer_journal/substitution-of-ala-251-of-the-d1-reaction-centre-polypeptide-with-a-7E3uyOWzpZ
Publisher
Springer Journals
Copyright
Copyright © 1998 by Kluwer Academic Publishers
Subject
Life Sciences; Biochemistry, general; Plant Sciences; Plant Pathology
ISSN
0167-4412
eISSN
1573-5028
D.O.I.
10.1023/A:1006051615081
Publisher site
See Article on Publisher Site

Abstract

Ala-251 in the membrane-parallel helix in the D-E loop of the D1 polypeptide close to the QB pocket of photosystem II (PS II), was mutated to aspartate (D), lysine (K), leucine (L) or serine (S) in Synechocystis 6803. O2 evolution rates (H2O→DCBQ; 2,6-dichloro-p-benzoquinone) of A251D, A251L and A251S were lower, being 38, 16, 62 and 70%, respectively, of that of the control, and there was an even more drastic impairment of O2 evolution when measured from H2O to DMBQ (2,5-dimethyl-p-benzoquinone), demonstrating modifications in the QB pocket. However, in all other mutants but A251K, the QB function could sustain O2 evolution at a level high enough to support photosynthetic growth. The mutant A251S, carrying a substitution of alanine for a chemically quite similar residue serine, was less severely affected. Substitution by a positively charged residue drastically delayed chlorophyll a fluorescence relaxation in the non-photosynthetic strain A251K, implying strong impairment of QA-to-QB electron transfer. Delay of fluorescence relaxation was clear in A251D as well, carrying a substitution of alanine for a negatively charged residue. The effects of the substitutions of A251 demonstrate the importance of this residue of the D1 polypeptide in the conformation of the acceptor side of PS II and, accordingly, the effect on the acceptor-side function of PS II was very clear. Nevertheless, the tolerance of PS II activity to high-light-induced photoinhibition in vivo and the subsequent D1 degradation were not much impaired in any of the photosynthetic mutant strains as compared to the control.

Journal

Plant Molecular BiologySpringer Journals

Published: Oct 6, 2004

References

You’re reading a free preview. Subscribe to read the entire article.


DeepDyve is your
personal research library

It’s your single place to instantly
discover and read the research
that matters to you.

Enjoy affordable access to
over 18 million articles from more than
15,000 peer-reviewed journals.

All for just $49/month

Explore the DeepDyve Library

Search

Query the DeepDyve database, plus search all of PubMed and Google Scholar seamlessly

Organize

Save any article or search result from DeepDyve, PubMed, and Google Scholar... all in one place.

Access

Get unlimited, online access to over 18 million full-text articles from more than 15,000 scientific journals.

Your journals are on DeepDyve

Read from thousands of the leading scholarly journals from SpringerNature, Elsevier, Wiley-Blackwell, Oxford University Press and more.

All the latest content is available, no embargo periods.

See the journals in your area

DeepDyve

Freelancer

DeepDyve

Pro

Price

FREE

$49/month
$360/year

Save searches from
Google Scholar,
PubMed

Create lists to
organize your research

Export lists, citations

Read DeepDyve articles

Abstract access only

Unlimited access to over
18 million full-text articles

Print

20 pages / month

PDF Discount

20% off