Subspaces of Normed Riesz Spaces

Subspaces of Normed Riesz Spaces It will be shown that a normed partially ordered vector space is linearly, norm, and order isomorphic to a subspace of a normed Riesz space if and only if its positive cone is closed and its norm p satisfies p(x)≤p(y) for all x and y with -y≤x≤y. A similar characterization of the subspaces of M-normed Riesz spaces is given. With aid of the first characterization, Krein's lemma on directedness of norm dual spaces can be directly derived from the result for normed Riesz spaces. Further properties of the norms ensuing from the characterization theorem are investigated. Also a generalization of the notion of Riesz norm is studied as an analogue of the r-norm from the theory of spaces of operators. Both classes of norms are used to extend results on spaces of operators between normed Riesz spaces to a setting with partially ordered vector spaces. Finally, a partial characterization of the subspaces of Riesz spaces with Riesz seminorms is given. http://www.deepdyve.com/assets/images/DeepDyve-Logo-lg.png Positivity Springer Journals

Subspaces of Normed Riesz Spaces

Loading next page...
 
/lp/springer_journal/subspaces-of-normed-riesz-spaces-clJQPZlioe
Publisher
Kluwer Academic Publishers
Copyright
Copyright © 2004 by Kluwer Academic Publishers
Subject
Mathematics; Fourier Analysis; Operator Theory; Potential Theory; Calculus of Variations and Optimal Control; Optimization; Econometrics
ISSN
1385-1292
eISSN
1572-9281
D.O.I.
10.1023/B:POST.0000042832.93702.3f
Publisher site
See Article on Publisher Site

Abstract

It will be shown that a normed partially ordered vector space is linearly, norm, and order isomorphic to a subspace of a normed Riesz space if and only if its positive cone is closed and its norm p satisfies p(x)≤p(y) for all x and y with -y≤x≤y. A similar characterization of the subspaces of M-normed Riesz spaces is given. With aid of the first characterization, Krein's lemma on directedness of norm dual spaces can be directly derived from the result for normed Riesz spaces. Further properties of the norms ensuing from the characterization theorem are investigated. Also a generalization of the notion of Riesz norm is studied as an analogue of the r-norm from the theory of spaces of operators. Both classes of norms are used to extend results on spaces of operators between normed Riesz spaces to a setting with partially ordered vector spaces. Finally, a partial characterization of the subspaces of Riesz spaces with Riesz seminorms is given.

Journal

PositivitySpringer Journals

Published: Oct 19, 2004

References

You’re reading a free preview. Subscribe to read the entire article.


DeepDyve is your
personal research library

It’s your single place to instantly
discover and read the research
that matters to you.

Enjoy affordable access to
over 12 million articles from more than
10,000 peer-reviewed journals.

All for just $49/month

Explore the DeepDyve Library

Unlimited reading

Read as many articles as you need. Full articles with original layout, charts and figures. Read online, from anywhere.

Stay up to date

Keep up with your field with Personalized Recommendations and Follow Journals to get automatic updates.

Organize your research

It’s easy to organize your research with our built-in tools.

Your journals are on DeepDyve

Read from thousands of the leading scholarly journals from SpringerNature, Elsevier, Wiley-Blackwell, Oxford University Press and more.

All the latest content is available, no embargo periods.

See the journals in your area

DeepDyve Freelancer

DeepDyve Pro

Price
FREE
$49/month

$360/year
Save searches from
Google Scholar,
PubMed
Create lists to
organize your research
Export lists, citations
Read DeepDyve articles
Abstract access only
Unlimited access to over
18 million full-text articles
Print
20 pages/month
PDF Discount
20% off