Submucosal gland distribution in the mouse has a genetic determination localized on Chromosome 9

Submucosal gland distribution in the mouse has a genetic determination localized on Chromosome 9 Submucosal glands (SMG) are important secretory glands that are present in the major airways and bronchioles of humans. In mice the structure, cellular composition, and density of SMG are similar to those seen in humans, but the glands are present only in the trachea. Characterization of SMG is important as they secrete bacteriocidal products such as lactoferrin, lysozyme, and defensins believed to be of importance in the innate defense system. Serous cells in SMG are the primary site of cystic fibrosis transmembrane conductance regulator (CFTR) gene expression and the initial site of histological abnormality in cystic fibrosis (CF) individuals. In this study, we examined four inbred strains of mice (A/J, C57BL/6N, FVB/N, and BALB/CAnN) and revealed that the extent to which glands descend in the mouse trachea varied between inbred strains. In particular, the A/J and C57BL/6N strains exhibited few SMG extending further than the first or second intercartilaginous space (mean depth of 0.4 ± 0.11 and 1.5 ± 0.32 tracheal rings respectively) in the trachea, whereas the FVB/N and BALB/CAnN strains had SMG extending beyond the fourth space (mean depths of 3.3 ± 0.46 and 5.6 ± 0.45 rings respectively). We have previously shown that in congenic C57Bl/6N Cftr mutant mice (CF mice), the SMG are distributed more distally than in wild-type C57Bl/6N but are indistinguishable from BALB/CAnN wild-type or CF mice. The implication that SMG distribution is influenced by Cftr gene expression (or a gene closely linked to Cftr) led us to investigate the genetic difference between C57Bl6/N and BALB/CAnN mice. In recombinant inbred strain (RIS) analysis (with BALB/CJ and C57BL/6J progenitors), two loci were identified as being linked to the SMG phenotype (peak likelihood statistic levels of 8.8 and 9.9 on Chrs 9 and 10 respectively, indicating suggestive linkage). A subsequent segregation analysis of an F2 intercross between the C57BL/6N and BALB/CAnN mice indicated that there were at least two major genetic factors responsible for SMG distribution. The loci indicated in the RI analysis were included in a targeted genome scan involving 235 F2 intercross animals (C57BL/6N and BALB/CAnN strain intercross). The genome scan confirmed the locus on Chr 9 (between genetic markers D9Mit11 and D9Mit182), designated Smgd1, as significantly linked to the SMG distribution phenotype (peak LOD score 5.8) within a 95% confidence interval of 12 cM. http://www.deepdyve.com/assets/images/DeepDyve-Logo-lg.png Mammalian Genome Springer Journals

Submucosal gland distribution in the mouse has a genetic determination localized on Chromosome 9

Loading next page...
 
/lp/springer_journal/submucosal-gland-distribution-in-the-mouse-has-a-genetic-determination-cuG0VGW8R9
Publisher
Springer-Verlag
Copyright
Copyright © 2001 by Springer-Verlag New York Inc.
Subject
Life Sciences; Cell Biology; Animal Genetics and Genomics; Human Genetics
ISSN
0938-8990
eISSN
1432-1777
D.O.I.
10.1007/s003350010244
Publisher site
See Article on Publisher Site

There are no references for this article.

You’re reading a free preview. Subscribe to read the entire article.


DeepDyve is your
personal research library

It’s your single place to instantly
discover and read the research
that matters to you.

Enjoy affordable access to
over 12 million articles from more than
10,000 peer-reviewed journals.

All for just $49/month

Explore the DeepDyve Library

Unlimited reading

Read as many articles as you need. Full articles with original layout, charts and figures. Read online, from anywhere.

Stay up to date

Keep up with your field with Personalized Recommendations and Follow Journals to get automatic updates.

Organize your research

It’s easy to organize your research with our built-in tools.

Your journals are on DeepDyve

Read from thousands of the leading scholarly journals from SpringerNature, Elsevier, Wiley-Blackwell, Oxford University Press and more.

All the latest content is available, no embargo periods.

See the journals in your area

Monthly Plan

  • Read unlimited articles
  • Personalized recommendations
  • No expiration
  • Print 20 pages per month
  • 20% off on PDF purchases
  • Organize your research
  • Get updates on your journals and topic searches

$49/month

Start Free Trial

14-day Free Trial

Best Deal — 39% off

Annual Plan

  • All the features of the Professional Plan, but for 39% off!
  • Billed annually
  • No expiration
  • For the normal price of 10 articles elsewhere, you get one full year of unlimited access to articles.

$588

$360/year

billed annually
Start Free Trial

14-day Free Trial