Subchronic olanzapine exposure leads to increased expression of myelination-related genes in rat fronto-medial cortex

Subchronic olanzapine exposure leads to increased expression of myelination-related genes in rat... Schizophrenia is a psychotic disorder with severe and disabling symptoms, such as hallucinations, delusions, blunted affect and social withdrawal. The neuropathology remains elusive, but disturbances in immunity-related processes, neuronal connectivity and myelination have consistently been linked to schizophrenia. Antipsychotic drugs can be efficient in reducing symptoms, acting primarily on the dopamine system, but additional biological targets are likely to exist. Here we have screened for novel mechanisms of action in an animal model, using adult rats exposed to long-acting olanzapine, achieving stable and clinically relevant antipsychotic drug concentrations. By microarray-based examination of global gene expression in the fronto-medial cortex, at the single gene- and gene-set level, we observed downregulation of two neuropeptide-encoding genes, Vgf and Cort (fold change −1,25 and −1,48, respectively) in response to olanzapine exposure. Furthermore, we demonstrated significant upregulation of five out of ~2000 GO predefined gene sets after olanzapine exposure. Strikingly, all were linked to myelination and oligodendrocyte development; “Ensheathment of neurons”, “Axon ensheathment”, “Myelination”, “Myelin sheath” and “Oligodendrocyte development” (FDR-values < 25). Sixteen of the leading edge genes in these gene sets were analysed independently by qPCR, of which 11 genes displayed significant upregulation, including Plp1, Mal, Mag and Cnp (fold change: 1,30, 1,50, 1,30 and 1,15, respectively). Several of the upregulated genes (e.g. MAG, MAL and CNP) have previously been reported as downregulated in post-mortem brain samples from schizophrenia patients. Although caution needs to be taken when extrapolating results from animal studies to humans, the data suggest a role for olanzapine in alleviating myelination-related dysfunction in schizophrenia. http://www.deepdyve.com/assets/images/DeepDyve-Logo-lg.png Translational Psychiatry Springer Journals

Subchronic olanzapine exposure leads to increased expression of myelination-related genes in rat fronto-medial cortex

Loading next page...
 
/lp/springer_journal/subchronic-olanzapine-exposure-leads-to-increased-expression-of-3sr8D4tM0Z
Publisher
Nature Publishing Group UK
Copyright
Copyright © 2017 by The Author(s)
Subject
Medicine & Public Health; Medicine/Public Health, general; Psychiatry; Neurosciences; Behavioral Sciences; Pharmacotherapy; Biological Psychology
eISSN
2158-3188
D.O.I.
10.1038/s41398-017-0008-3
Publisher site
See Article on Publisher Site

Abstract

Schizophrenia is a psychotic disorder with severe and disabling symptoms, such as hallucinations, delusions, blunted affect and social withdrawal. The neuropathology remains elusive, but disturbances in immunity-related processes, neuronal connectivity and myelination have consistently been linked to schizophrenia. Antipsychotic drugs can be efficient in reducing symptoms, acting primarily on the dopamine system, but additional biological targets are likely to exist. Here we have screened for novel mechanisms of action in an animal model, using adult rats exposed to long-acting olanzapine, achieving stable and clinically relevant antipsychotic drug concentrations. By microarray-based examination of global gene expression in the fronto-medial cortex, at the single gene- and gene-set level, we observed downregulation of two neuropeptide-encoding genes, Vgf and Cort (fold change −1,25 and −1,48, respectively) in response to olanzapine exposure. Furthermore, we demonstrated significant upregulation of five out of ~2000 GO predefined gene sets after olanzapine exposure. Strikingly, all were linked to myelination and oligodendrocyte development; “Ensheathment of neurons”, “Axon ensheathment”, “Myelination”, “Myelin sheath” and “Oligodendrocyte development” (FDR-values < 25). Sixteen of the leading edge genes in these gene sets were analysed independently by qPCR, of which 11 genes displayed significant upregulation, including Plp1, Mal, Mag and Cnp (fold change: 1,30, 1,50, 1,30 and 1,15, respectively). Several of the upregulated genes (e.g. MAG, MAL and CNP) have previously been reported as downregulated in post-mortem brain samples from schizophrenia patients. Although caution needs to be taken when extrapolating results from animal studies to humans, the data suggest a role for olanzapine in alleviating myelination-related dysfunction in schizophrenia.

Journal

Translational PsychiatrySpringer Journals

Published: Nov 30, 2017

References

You’re reading a free preview. Subscribe to read the entire article.


DeepDyve is your
personal research library

It’s your single place to instantly
discover and read the research
that matters to you.

Enjoy affordable access to
over 18 million articles from more than
15,000 peer-reviewed journals.

All for just $49/month

Explore the DeepDyve Library

Search

Query the DeepDyve database, plus search all of PubMed and Google Scholar seamlessly

Organize

Save any article or search result from DeepDyve, PubMed, and Google Scholar... all in one place.

Access

Get unlimited, online access to over 18 million full-text articles from more than 15,000 scientific journals.

Your journals are on DeepDyve

Read from thousands of the leading scholarly journals from SpringerNature, Elsevier, Wiley-Blackwell, Oxford University Press and more.

All the latest content is available, no embargo periods.

See the journals in your area

DeepDyve

Freelancer

DeepDyve

Pro

Price

FREE

$49/month
$360/year

Save searches from
Google Scholar,
PubMed

Create lists to
organize your research

Export lists, citations

Read DeepDyve articles

Abstract access only

Unlimited access to over
18 million full-text articles

Print

20 pages / month

PDF Discount

20% off